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Abstract

Formation of highly-branched off-stoichiometric polymers from A,+ B, monomers has been described theoretically using a statistical
branching theory in which the irreversibility of bond formation was respected. The critical molar ratio (CMR) of A to B groups, i.e., such
excess of groups of one type beyond which the system does not gel and only soluble highly-branched polymers are formed, was calculated.
CMR depends on the functionality of the components and on the reactivity of functional groups involved in formation of bonds. For an
increasing excess of A groups over B groups, soluble A-functional polymers of decreasing molecular weight are formed. When
monofunctional monomer is added, the number-average molecular weights and degrees of polymerization as well as the number of functional
groups per molecule remain relatively low even at the CMR when the gel point is reached. When one A group in the A3 monomer has higher
reactivity than the remaining two and also in B2 where the reactivities of B groups are different, the value of CMR decreases from 2 towards
1.5, which is the limiting case. Important is that with increasing differences in reactivity the range of molecular weights can be extended and
the polydispersity can be suppressed. Functional highly-branched polymers of reasonable molecular weight and polydispersity can be
obtained, which in their application can compete with conventional hyperbranched polymers. The use of the information obtained in this

description of crosslinking of the highly-branched off-stoichiometric polymers is outlined.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer networks are prepared from precursors, i.e.
compounds carrying functional groups capable of bond
formation. Their functionality or functionality distribution
must be such that the system gels and a network is formed.
Some of the precursors are simple chemical compounds,
some others are specially designed functional structures
(oligomers), and yet others are mixtures of compounds of
varying functionality and molecular weight [1]. Low-
molecular-weight functional copolymers or hyperbranched
functional polymers obtained from AB; monomers can
serve as examples of such polydisperse precursors.
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For alternating Afs + Bgg systems (groups A and B give
bonds A-B), the earliest gelation and maximum crosslink
density is obtained in stoichiometric systems. That in off-
stoichiometric systems the gel point is shifted to higher
conversions of the minority groups has been recognized
since the derivation of the gelling condition [2]. However,
this phenomenon was employed much later in experimental
and theoretical studies as well as in practical applications.
Some producers of two-component epoxy-amine adhesives
used empirically the pre-reaction of a polyamine in large
excess with a diepoxide to increase the viscosity of the
amine hardener and to lower its vapor pressure. Later on, the
off-stoichiometry effect was used in epoxy-amine and
polyol-polyisocyanate systems to control the crosslink
density [3-10]. The critical molar ratio (CMR) of A:B or
B:A groups was defined [3] as the molar ratio at which
gelation took place at full conversion of minority groups and
beyond which the gel point could not be reached at all and
only soluble branched polymers were formed. The CMR
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values can be obtained experimentally very easily. These
values were discussed in terms of reactivity of functional
groups and intensity of cyclization reactions. For instance,
the shift of CMR of diepoxide-diamine systems could be
explained by the differences in reactivity of primary and
secondary amino groups in aliphatic and aromatic curing
agents [5,11].

The increasing interest in off-stoichiometric highly-
branched polyfunctional polymers in recent years [12-29]
has been induced by the development of hyperbranched
polymers synthesized by A+B—AB polymerization of
AB; or BA; monomers. Here, we will be using the
abbreviation BA¢ (e.g., BA,) to keep correspondence with
the A3-B2 systems. The structures of the highly-branched
polymers obtained by Ags+Bg reaction and classical
hyperbranched polymers prepared from BA; monomers are
basically not different. Scheme 1 shows one of the
distributions of functional highly-branched molecules
obtained from A3 to B2 monomers bearing unreacted A
groups.

The generally lower price of starting components of Xy
type compared to BA; monomers and the wide range of
variation of architecture of group-bearing scaffold X makes
the off-stoichiometric highly-branched polymers especially
attractive. There is, however, a distinct difference between
the two classes: The hyperbranched systems bearing only
one focal group do not gel unless side reactions interfere,
but the system Aga + B¢ does gel in the window of molar
ratios of functional groups below the critical values, (7 )crit
or (rg)eric- This is, however, not the only difference. As we
shall see later, there is a distinct difference in the
dependence of weight-average molecular weight or poly-
dispersity on the number average molecular weight.

Several chemically different off-stoichiometric highly-
branched polymers have been investigated so far. The main
emphasis of experimental as well as theoretical studies was
concentrated on the degree of branching (DB); the key
quantity used for classical BA¢ hyperbranched polymers that
determines compactness of the molecules. Important
predictions about the effect of group reactivity and
polymerization regime on DB were made recently [21]
using kinetic method originally developed for the study of
DB of classical hyperbranched polymers [30,31].

Scheme 1.

In this contribution, we have focused on structure of the
off-stoichiometric highly-branched molecules designed for
their application as polymer networks precursors. We have
investigated theoretically the gelation limits and develop-
ment of molecular weight and functionality averages as a
function of initial composition and functional groups
reactivity. The use of information obtained for description
of the network formation process is also discussed.

2. Modeling of formation of highly-branched off-
stoichiometric polymers

For modeling of generation of branched structures, the
statistical theory of branching processes based on cascade
substitution and employing the formalism of probability
generating functions were used. This approach has been
applied to a variety of systems and branching problems
before (cf., e.g., Refs. [1,3-10]). In its ring-free version, this
approach does not consider formation of cycles before the
gel point, but does take into account uncorrelated circuit
closing beyond the gel point. The statistical approach is
rigorously applicable to systems without long-range sto-
chastic correlations and also, as was proved experimentally,
for many kinetically controlled systems, where the stochas-
tic correlations are not too strong (e.g., epoxide or
polyurethane networks [5,10]). Furthermore, the formalism
give easy access to various averages and the relations are
pre-prepared for the description of a crosslinking process
when these highly-branched functional polymers are further
crosslinked (cf., e.g., Ref. [32]). Here, we will be
considering primarily non-reacting systems, with only one
type of group, the other being completely consumed.
However, the treatment and the relations derived below
allow for characterization of ‘live’ systems containing both
unreacted groups A and B.

The plan for the analysis of formation and distributions of
the off-stoichiometric highly-branched functional polymers
is as follows:

1. To calculate the gelation limits in terms of critical molar
ratios (CMR) of A to B groups.

2. To calculate the dependence of number- and weight-
average molecular weights and, possibly, first and
second moments of functionality distributions as a
function of initial molar ratios of A to B groups beyond
CMR and to compare the correlations between poly-
dispersity and number-average molecular weight or
conversion of functional groups.

Here, we have analyzed the A3+ A1-B2 systems with
equal reactivity of all A and all B groups, respectively, and
A3 —B2 systems with groups of different reactivity. The
derivation of the respective equations is explained in the
Appendix A.

The structure of A3+ Al —B2 systems was analyzed in
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detail in the post gel region in terms of sol fraction, dangling
chains, and elastically active network chains [33]. In the
Appendix A, the system A3+ Al—B2 is described by Eqs.
(A1)-(A21).

The boundary between gelling systems and region of
branched polymers is determined by the critical value of the
molar ratio of A:B functional groups, ra, i.e., by (Fa)cric=
([Alo/[Blo)eric (Eq. (A6))

(ra)erit = Xas(fa — 1) 9]

where f5 is the functionality of Af monomer (f, =3 in our
case), xar is the fraction of groups of the Af monomer in
mixture with the A1 monomer.
The number-average molecular weight of the highly-
branched polymer was calculated by Eq. (A8)
naiMay + nagMar + ngyMpy

M, = 2
" 1— ZaBnBZ ( )

where nay, nap 1y are molar fractions of components
indicated, and M, M s, My, their molecular weights. The
molar fractions, n, can be expressed through molar ratio rp
and xap or ratio of groups A in mono- (sa;) and
polyfunctional (saf) component, respectively, as is shown
in the Appendix A. When the reaction goes to completion,
as is usually the case, the conversion of B-groups, ag,
reaches unity.

The weight-average molecular weight is given by Eq.
(A13), which, after substitution for the values of derivatives
of u gives for ag=1 (s = 1/r4) the relation

SaMgy + My) ]
1 —xae(fa — Dira

My, = mpy My + mpg |:MAf +

2[Mp + Mpyxar(fa — D/ra
+ iy, | My, + 3
mm{ - L = xae(fa — Dira ©)
where mMa =nA1MA1/S, mAonAfMAf/S, mpgy = 1—
MaA|1 — Mg, S= nAlMAl + I’lAfMAf + nBzMBZ are mass

fractions of the components. The first-moment and
second-moment average functionalities of the highly-
branched polymer are given by the following relations (cf.
Egs. (A16)-(A21))

1—-1/ +
() = ( ra)(fanas +nap) (4)

1— 2}’132

_ _ b xa(fa = DA =1y +1
{fad = naifa {1 a + ra(l = xpi(fs — Diry)

1
+ naq (1 _>
ra

+ g, Xar(fa — DA — 1ry) +1 )

I —xa¢(fa — Dira
A+B polyfunctional systems with groups of different
reactivity have higher potential to offer highly-branched
polymers of increased molecular weight and functionality.

A@ A®

B() Qe B2

Scheme 2.

Of the wide variety of combinations of reactivity differ-
ences, we have investigated the case, where the A3
molecule has one group of higher reactivity than the
remaining two and also the two B groups in B2 component
have different reactivity (Scheme 2).

For instance, the AV group is (much) more reactive than
the other two A® groups and the same is valid for groups
B™ and B®. Such situation arises in the case when two
functional groups of different reactivity are involved such as
the amine and hydroxy groups in diethanolamine or
diisopropylamine [22]. Also, a number diisocyanates have
groups of different reactivity.

Such A3—B2 system treated in Section A.2 of the
Appendix A is theoretically more complex than the
relatively simple A1+ A3 —B2. The simplicity of the latter
system is in the randomness of the reaction (equal and
independent reactivity of functional groups). It has been
shown that the solution obtained by application of statistical
theory is identical with the results of exact kinetic theory
(cf., e.g., [34,35]). In our case, it is easy to distinguish
between conversions of different functional groups existing
in the system. However, the bond assemblage procedure
must guarantee the irreversibility of formation of bonds of
the given type. We have used an approach based on first-
order irreversible Markovian process where the (eight)
transition probabilities are calculated from fractions of
dyads of reacted groups (four dyads). The transition
probabilities (Eq. (A33)) are functions of overall reaction
conversion and are obtained by numerical solution of a
system of differential equations for reacted groups dyads.
This is described in the Appendix A by Eqs. (A31)—(A32).
The transition probabilities are then used in the branching
process (Egs. (A22)—(A30)). The basic pgf is described by
Eq. (A22)

Fo,(Z,2) = nAZ/IZIA [(1 — aa1)Zatunr + @ai€is]

X1 = @a)Zasun + @aréapl” + npZa[(1 — ag))

X Zgunr T ap1&1all(1 — ap2)Zpoynr + @p2éanl (6)

§1a = PaiB1Za1Bl T Pa1B2Za1B2  §24 = Pa2B12A2B1 T PA2B2ZA2B2

§18 = Peia1ZB1a1 T PB1a2ZB1A2  §24 = PB2A1ZB241 T PB2A2ZB2A2

Eight types of (oriented) bonds are described by the vector
2= (ZA1B1,2A1B2:ZA2B 1,ZA2B2,ZB1A1,ZB1A2:ZB2A 1,ZB2A2), Which
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corresponds to the same number of pgf's F=(Fai1g1,Fa1B2,
Faop1,F aoe2.FeianFB1a2:FB2a1,FB242) (EQ. (A23)). The gel
point condition is determined by 8X8 determinant (Egs.
(A24) and (A25)). Because two components participate in the
structure build-up, the weight-average molecular weight is
calculated by differentiating the weight-fraction generating
function with respect to pgf variables Z, and Zg that identify
the property of the building unit (here, its molecular weight).
Thus, M,, is determined by 16 values of derivatives, which are
determined by 16 linear equations (A30). Due to extensive
degree of degeneration, the arithmetic relations are of
reasonable complexity.

3. Results and discussion

It is obvious that in the ideal A3 —B2 system the critical
molar ratios (ra)cric=2(excess of A groups) or (ra)erit=
1/2(excess of B groups). Addition of a monofunctional
compound shifts the critical molar ratio from 2 to lower
values and eventually the system stops gelling at molar
ratios equal to one. The dependence of (rp)cit VS. Xar 1S
shown in Fig. 1

The system stops gelling when the numbers of A-groups
(not molecules) of mono- and trifunctional components are
equal. Addition of monofunctional components makes the
system ‘safer’ against possible gelation but, as we shall see,
other properties important for network formation are also
affected. It can be seen that the number-average molecular
weights remain rather low even at the onset of gelation when
the weight-average molecular weight diverges (Fig. 2).

However, the molecular weights of such precursors of
1200-1400 corresponding to number-average degree of
polymerization of about 4 are still in the range interesting
for certain applications. Better insight into the problem

2
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Fig. 1. A3+ Al1—B2 equireactive systems: dependence of critical molar
ratio (ra)eric ON the ratio of A groups of monofunctional component (N4 ) to
groups of the fa-functional component (falNar), Sa1=Na1/faNas-
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Fig. 2. A3+A1—B2 equireactive systems: dependence of the number-
average (dashed line) and weight-average (full line) molecular weight on
the ratio of A to B groups, ra; for various contents of the monofunctional
component so; (=0, 0.05, 0.1, 0.2, 0.5, 0.99 from right to left) (M ; =300,
MA3 = 600, MBZ = 400)

shows Fig. 3 and the functionality averages shown in Fig. 4.
Products with reasonable polydispersity and molecular
weight are obtained when the modification with Al is
small (sp;=0.05, 0.1)

The number-average functionality has reasonable values
of about 3 for modification with 10-20% monofunctional
component. At higher fractions of the monofuctional
component, the molecular weight as well as the number-
average functionality decreases with decreasing r, and a
non-negligible amount of zero-functional molecules is
produced. Using the Af monomer of higher fy does not
help much because one has to work with higher excess of A

500 1000 1500 2000 2500

Fig. 3. A3+Al and B2 equireactive systems: interdependence of
polydispersity (PD=M,,/M,) and M,, for the molar ratios of the groups of
monofunctional to trifunctional monomers, s,; indicated; (M,;=300,
M a3 =600, Mg, =400).
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<fA>1’ <fA>2

Fig. 4. A3+ Al and B2 system: functionality averages (fs); (dashed) and {f,), in dependence on the ratio of A to B groups, ra, for different ratios of groups of
monofunctional to trifunctional monomers, s5; (0, 0.1, 0.5, 0.99 indicated).

groups to get the same polydispersity. The values of M, for disadvantage is a relatively low number-average molecular
the same polydispersity are even smaller. weight at a composition at which M, starts growing rapidly
Summarizing, highly-branched A-functional polymers and approaching the gel point. However, about 60-70%
from polyfunctional A—B monomers with equireactive potential bonds in the system can be preformed and M,, can
groups have only a limited application value. The main increase by a factor of 3-5. This can be technologically
1 T T T T
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Fig. 5. Dependence of conversions of groups B’ and B‘® on overall conversion of B groups for values of reactivity ratios kf =« indicated.
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Fig. 6. (a)—(c) Dependence of selected transition probabilities for bonds px;y; extending from group Xi to group Yj (px;y1+ pxiy2=1) for the following values

of Kk =«: 6A 1, 6B 5, 6C 1000.

(viscosity adjustment, lowering of shrinkage) and envir-
onmentally (lowering of VOC and toxic emissions)
important.

The A3 —B2 systems offer much more versatility when
adjusting the groups reactivity. The system investigated
here can be denoted as A{"AY —B{"BY where the

bracketed superscript denotes the group type and the
subscript as usual the number of groups. Since, at this
point, no correlation was made with experimental systems,
further simplifications have been adopted to demonstrate the
reactivity difference effect. Namely, the reactivity of groups
(1) was assumed to be higher or equal than that of groups (2)
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Fig. 6 (continued)

and, furthermore, the increase in reactivity of groups A was
assumed to be the same as that of groups B. There is,
however, no obstacle to investigate the effect of any
combinations of rate constant ratios x and «.

Three levels of differences in reactivity of A" relative to
A® (rate constants ratio KX) and BV relative to B® (k%)
will be discussed: k=« =1 (equal reactivity, random
case), ki =«kf =5 (moderate reactivity difference) and
K =k = 1000 (very strong reactivity difference). Fig. 5
shows the conversions of B and B® groups.

For equal reactivity, the conversions are equal, for k} =
k§, =5 the deviations from randomness is well expressed
and for x} = & = 1000, initially only the more reactive
group reacts, and the less reactive starts reacting only after
the first one has been consumed.

The changes of transition probabilities for bonds as
functions of the degree structure build-up enable us to
understand the role of reactivity differences on passage from
gelling to non-gelling systems (Fig. 6(a)—(c)).

For the random case, all transition probabilities extend-
ing from A to B groups are equal to ', for the B groups
those extending to A® groups are larger by a factor of 2
than those extending to A" groups (values 2/3 and 1/3)
because the concentration of A® groups is twice as large.
As the reactivity differences increase, Bl —» Al and Al —
B1 bonds (i.e. dyads A1B1) (cf., Appendix A), are formed
initially almost exclusively followed by almost exclusive
formation of A2B2 and B2A2 bonds. Still, to the end of the
reaction a few percent of A" groups reacted with B®
groups because at that time B" groups had been practically

consumed. This fact will explain later the slow convergence
of the (ra)eric to the value of 1.5 characteristic of classical
hyperbranched polymers.

The dependence of CMR, (7a).:it, On the reactivity ratios
is displayed in Fig. 7. It is seen that for the reactivity ratio
about 5, the CMC decreases initially more steeply and the

decrease slows down after k) and kj; reach the value of

about 10. For the highest values of x} and xf; examined
(1000), (ra)crit» still has not reached the limiting value of
(ra)erit=1.5, for the reasons discussed above and it would
need another decade to approach it closely. When the excess
of A groups increases beyond the critical value, the
molecular weight averages decrease as is seen in Fig. 8
The maximum achievable number-average molecular
weight delimited by the dotted lines increases from about
1.2X10° for k§ = «f = 1, to 2X 10> for k} =« = 5 and to
9% 10? for k% = «f = 1000. This corresponds to degree of
polymerization of about 7, 12 and 50. For practical
application, the polydispersity should not exceed a certain
limit (e.g., M,/M,, should not exceed the value 34, cf. Fig. 9),
which corresponds to degrees of polymerization of 5-25.
The simulation also shows the molecular weights build
up for a certain value of molar ratio, 5. From Fig. 10, one
can see that the molecular weight remains low until the very
end of the reaction when the increase is getting steep. Here,
the value of r, is equal to (7). and My, and polydispersity
diverge always at ag equal to 1. At rp > (ra)crie, My does not
diverge at all. When the increase of polydispersity during
structure build-up is plotted against M, (Fig. 11) and the

initial portion is enlarged, one can observe for ki = kj} =
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Fig. 7. Dependence of the critical molar ratio (CMR), (r)csit, for polyaddition of the A(]U A(zz) and B(II)B(]Z) components on the reactivity ratios of AV o AP, KX,
and BV to B®, « groups, Kk =«f.

1000 a strange phenomenon (Fig. 11(a,b)) that the This can be explained by in situ formation of a compound
polydispersity after passage through a small maximum A3—B2 from 1 molecule of monomer A(ll)A(zz) and 1
decreases to a value that is smaller than the initial value and molecule of B(ll)B(lz) . Closer inspection shows, however, that
approaches 1. the compound is not fully pure (polydispersity index about
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A

Fig. 8. Dependence of the number- and weight-average molecular weights of the A(]”A(Qz) —B(1'>B(12) polymer on the molar ratio of A:B groups, ra, reactivity
ratios of A" to A(Z), k%, and B® to B@, i groups indicated, kf = 4 ; molecular weight of the components A and B, MA=129, Mg=222.
A B group A= Kp g p
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to B®, K} groups indicated, K} = &3} ; molecular weight of the components A and B, M, =129, Mg=222.

1.03) and this is the reason for the fact that the limiting value
of (ra)eic=1.5 has not yet been reached for
Kk = K3 = 1000.

In Fig. 12, the plot of polydispersity index vs. M, is used
for comparison of off-stoichiometric highly-branched poly-
mers with classical BA, hyperbranched polymer, for which
the molecular weight of the hyperbranched monomer is
equal to the sum of molecular weights of A3+ B2. Fig. 12

shows that off-stoichiometric A3+ B2 polymers with strong
differences in reactivity of functional groups A are fully
equivalent to hyperbranched polymers in the range of
molecular weights up to approximately 10,000 (P, = 50-60
based on A3 and B2 monomers or P, =25-30 based on BA,
monomer).

The difference compared to Fig. 11 is that Fig. 11
describes the evolution of M, and M, for ro=(ra)csi: as a

15000
10000
8000
3 6000
10000
4000f
| =y .
s 2000
E“;
8.
5000
0 .
0 01

Fig. 10. Dependence of polydispersity index of the A(l])Aéz) - B(I])B(lz) polymer on conversion of B groups for reactivity ratios of A1 to A®, k%, and B® to
B(z), KE groups indicated, KX = KE; molecular weight of the components A and B, M5 =129, Mg=222.
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Fig. 11. (a) Interdependence of polydispersity index of the A(ll) A(zz) - B(II)B(lz) polymer and M, during polymer formation for reactivity ratios of A" to A®, Kk,
and BV to B®, «j; groups indicated, kK = «if; molecular weight of the components A and B, M, =129, My =222; (b) Enlarged part of the figure.

function of conversion ap, whereas in Fig. 12 the
dependences correspond to various values of r, for ag=
1. We see again the characteristic initial decrease of the
polydispersity index caused by the initial formation of the
A3+B2 ‘compound’. The polydispersity of the off-
stoichiometric polymer for f =k = 1000 is even lower
than the polydispersity of the hyperbranched polymer. This

feature can be explained by the fact that the molecular
weight of hyperbranched monomer increases by BA,
increments whereas in the A3—B2 case molecules like
(A3),B2, or (A3)3(B2), also exist. Morover, the minimum
polydispersity in the A3 —B2 case is reached for molecular
weight, which is somewhat higher than the molecular
weight of the BA, unit.
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Fig. 12. Interdependence of polydispersity index of the A(I])A(zz) — B(II)B(IZ) polymer and M,, obtained for various values of r, (cf. Fig. 10) and comparison with

+

the same dependence for the random hyperbranched polymers obtained from BA, monomer. Reactivity ratios of A? to A® « 1, and B to B®, K3 groups
indicated, KX = KE; molecular weight of the components A and B, M, =129, Mg=222.

4. Conclusions

The formation of highly-branched off-stoichiometric
polymers from A,+B, monomers has been described by
the theory of branching processes in which the irreversi-
bility of bond formation was respected. This treatment
offers prediction of the critical molar ratio (CMR), (ra)cric=
[Alo/[Blo, beyond which the system does not gel and only
soluble highly-branched polymers are formed. The value of
CMR depends first of all on functionality of the components
and also on the reactivity of functional groups involved in
formation of bonds. For the ideal A3 —B2 system, the CMR
for the A:B groups, (ra)cri, 1S €qual to 2. For an increasing
excess of A groups over B groups, soluble A-functional
polymers of decreasing molecular weight are formed. If
(TA)erit 18 lower than 2, the system gels and non-extractable
crosslinked polymer is present. The value of CMR can be
lowered by addition of a monofunctional monomer or using
A3 and B2 monomers with groups of different reactivity.
The effect of modification of the functionality of the A
component was demonstrated by the A3+ Al —B2 system
in which a monofunctional component Al was added to the
trifunctional component A3. The excess of A groups
characterized by (74 )i decreased from 2 to 1 (i.e., [A]lop=
[Blo)) when the fraction of A groups of Al was equal to that
of A3 (na; =3n43). The number-average molecular weights
and degrees of polymerization as well as the number of
functional groups per molecule remain relatively low even

at CMR when the gel point is reached. Therefore, the
applications are limited by this factor.

A system denoted as AV A® — B{"B{®, in which groups
A=Al are more reactive than groups A =A2 and the
same holds for B"=BI1 vs. B®=B2 groups, was
investigated in detail. The relative reactivity of Al to A2
group and B1 to B2 group varied in the range of k= 1-1000.
With increasing differences in reactivity (increasing «), the
Al—B1 and A2—B2 become increasingly dominant over
the Al —B2 and A2 —BI1 bonds and CMR decreases from 2
to 1.5. However, even for k =1000, (ra)ci=1.55 and the
convergence to the value of 1.50 is slow. Important is that
with increasing differences in reactivity the polydispersity
can be suppressed. The functional highly-branched poly-
mers obtained in the range of x>10 have M, of several
thousands Daltons and in their application can compete with
conventional hyperbranched polymers.

The relations derived using the statistical branching
theory have implicitly built-in the information on the
unreacted functional groups and can be further used for
description of crosslinking of these off-stoichiometric
polymers with a crosslinking monomer (component C) by
which A—C bonds are formed. For example, equations (A2)
and (A22) contain the pgf variables Za,u, and Za ., and
Za1unrs Tespectively. When these polymers are randomly
crosslinked, the transformation to be made is of the type

Zaunr = (1 — aac)Zaunr + aaczac
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where aac is the degree of conversion of A groups into
A—C bonds and zc is the pgf variable identifying A—C
bonds. The treatment can be further refined if A groups of
different reactivity are present in the highly-branched off-
stoichiometric polymer.
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Appendix A. Derivation of relations for critical molar
ratios and molecular weight and functionality averages

A.l. Af+Al— B2 system with equal and independent
reactivity of functional groups

The basic information on units, bonds and unreacted
functional groups is contained in the probability generating
function F,(z,Z)

Fou(z,Z) = np ZX3 (1 — 6a)Zaunr + @azg]
+ narZap [(1 — @) Zaunr + aazpl?

+ nppZpP[(1 — ap)Zgunr + @pza)° (Al)

where 1,1, nag, gy are molar fractions of components Al,
Af and B2, respectively. The variables of the pgf’s Zﬁf‘,
Zaunrs 2 (for A1) count, respectively, a property of the unit
(e.g. molecular weight of Al), number of unreacted
functional groups A, and number of bonds extending from
A to B units; z, is associated with bonds extending from B
to A units, and a, and ap are conversions of A and B
groups, respectively.

The molar fractions n can be expressed through the
fraction of the A-groups of monofunctional

component x5 or the ratio sa; as follows:

NA] NAf

nayp = > Nar = >
Nay + Npr + Ny Nay + Nar + Ny

npy =1 —nap —nap, Xar = L’

Nai +faNas

= SaNag - Nai _ faNar

AT o o SAL T s = ,
Nai +falNas SaNas Nai

o — NVar +falNas

A 2Ng,

where N are number of moles of components. For instance,

expressing n through x and r, gives

N 2fATAXAL
Al = ,
2ra(faxar + xap) +/fa
2raXar |

Rar = npy = L — A1 — Naf

2ra(faxar +xap) +fa’ '
Xpa| = _ far Xar =1—x
N + fanas’ Al Al

(A2)

The pgf for additional bonds extending from units already
bound to another unit (in the preceding generation) is obtained
by differentiation, as shown in Egs. (A3) and (A4)

0F,,(z,Z
Fa(p.Z) = % X Ny
B
= Xa1Za + X Za (1 — ap)Zpune + apzpl* ™!
(A3)
OF,,(z,Z)
Fy(zs,Z) = Oaf X N = ZR2 (1 — ) Zgunr + atpzal?
A

(A4)

where N, and N are normalizers, so that Fo(1,1)=F(1,1)=
1;x41 and x5 rare molar fractions of A groups in component Al
and Af, respectively.

The gel point is determined only by structure connec-
tivity and molecular weight and number of unreacted groups
are irrelevant, i.e., Zi(i“ = Zunr = 1. For formation of an
infinite path of bonds, the average number of bonds
extending from a unit on generation i to units in generation
i+1 (i>0) must be equal to 1

dFA(1,z5) 0Fg(1,24)
aZB aZA

= xar(fa — Dapag =1 (A5)

where F® and F% are shorthand notations for the values of
derivatives on the left-hand side of Eq. (AS).

For excess of A groups, the critical molar ratio (r)e;i =
([AoV/[BoDerie = ((fanag + na1)/2ng;) e is obtained from the
condition ag=1

(ra)erit = Xas(fa — 1) (A6)

From this equation, one can find that the critical value of
Xat, fraction of A groups of the polyfunctional component,
(xAf)crit, When ra drops to 1

(ap)erit = V(fa — 1) (AT)

This is the lowest possible content of the polyfunctional
monomer in mixture with the monofunctional one at which
the system can gel. For fo =3, (xap)cric= 1/2 and (sap)cric= 1.

A.1.1. Molecular weight averages
The number-average molecular weight of the highly-
branched polymer is given by the weights of the building
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units per molecule. The number of molecules is given by
the number of building units minus the number of bonds.
The number of bonds is given by the value of derivatives
of the function F,(2,Z); Nponas = (0F0,/024);,—=1=
(OF 0,/028);,=z5=1 = (a1 T fanap)os = 2ngrag,

na1May + fanarMas + ngaMp)y

M, = A8
g 1— 21’1326(3 ( )

The weight-average molecular weight is derived from the
weight fraction generating function, W(Z(u)), in which the
distribution of degrees of polymerization is implicitly
generated through recursive equations of variable u. Note
that u is a function of pgf variables bearing information on the
structural units, Z/A{IA' s Z%‘“’, Zg’l B2 Thus

W(Z()) = ma ZNM 1 — ap + ajugl+
mAfZi/[A"[l — Qp + OlAMB]fA+ (Ag)

my;Zy (1 — ap + aguy)’

where ma 1, mag, My, are mass fractions of initial components

P naiMa
Al — )
natMay + naeM g + ngr My,
_ naeM ag
Mmas =

natMay + naMag + ngaMp,
mpy = 1 —mp; — may
and the recursive equations read
up = ZWN (1 — xap) + ZNMxae[1 — aq + aqugl™ ™!
(A10)
ug = Zp™(1 — ag + agy) (A11)

Since the molecular weight average is obtained by
differentiation of W(Z(u))

M,, = [OW(Z)/OZx + OW (Z(1))/0Zg],—, (A12)
that is
My, = ma Mpy + +maclMag + faca(ug + up)]

+ mpo[Mgy + 2a5(ux + up)] (A13)

one has to find the derivatives of u, and ug with respect to Z,
and Zg

Qup(Z
ui = [ Ua( )] etc.
0Zp | z,=z,=1
explicitly

s = xpclMar + (fa — Daaup] + (1 — xpp)My,,

A

A __ B __ B
Ug = OgUp, ug = MB2 + OgUA

(A14)

B B
up = xar(fa — Daaug,

The solution for the four variables reads

A XapMar + (1 — xpap)My,
N

1—D ’
B Xarlfa = DaaMy, My
A 1-D 1-D’
_ (A15)
A — ag[xasMar + (1 —x2)Ma1] _ apMy
B 1-D 1-D’
M,
up = 1 _BzD’ D = xxe(fa — Daaog

Note that for highly-branched off-stoichiometric networks,
ag= 1 and oA = 1/rA.

A.1.2. Averages of functionality distribution

To obtain the first- and second-moment average of the
number of functional groups per molecule, one proceeds
similarly as in the case of molecular weights, but the pgf
variables Zu,,, and Zg,,, are considered instead of those
monitoring the molecular weight. Thus, the function F, is
changed to Uy, (Eq. (A16), U=unreacted); as before, za
and zg remain to be variables related to bonds B— A and
A — B, respectively. Here. The condition ag=1 was
applied.

Uon(z,Z) = np [(1 — ap)Zpune + aazel+
narl(1 = @4)Zaune + aazpl* +
npol(1 — ag)Zpynr + apzal” (A16)

= na1l(1 — ap)Zpunr + aazpl+

narl(1 = 000) Zagny + azpl™ + npazi

Using the same reasoning as in the case of number-
average molecular weight and the fact that, one get for (fa),

¢ = (1 — ap)(fanar + na1)

Al7
1— 2”]32 ( )

The second moment average of functionality distribution
defined as

=

>i=1ia

is derived from

Uy(2,Z) = np [(1 — ap)Zpunr + apupl+

(fah =

(A18)
nael(1 = @) Zaune + aatipgV* + nppuiy
with
up = xp1 + xarl(1 — @) Zagnr + apupt® ™', ug = uy
(A19)

giving
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A= Xar(fa — D1 — ap) B_ 1

A 1—-D R,
A — xar(fa — DI — ap) uB = 1 (A20)
B 1—-D BT 1-D

with D = xp:(fa — Day
Therefore

(fadr = nagfall — ap + ap(up + up)]+
(A21)
nar(1 — o) + 2npy (up + up)

Note that ap=1/r4.

A.2. A3 — B2 system with unequal reactivity of functional
groups

We will consider reaction of two monomers A3
(A(II)A(;) and B2 (B”B®) having A-groups of different
reactivity (A"=A1 and A®’=A2) and B-groups of
different reactivity (B‘”=Bl1 and B®?=B2). No
substitution effect (change of reactivity as a result of
reaction) and no cyclization are considered. The degrees
of conversion of functional groups Al and A2 as well
as Bl and B2 into bonds wap;, ®ar and «ap;, aga,
respectively, are different. Also, the bonds leading from
groups Ai to Bj and Bj to Ai are to be distinguished.
The relations will be derived first as functions of
conversion of functional groups and then conditions
characteristic of highly-branched off-stoichiometric sys-
tems (ag=1, ap=1/rp) will be introduced.

The following bonds connecting the functional groups
are considered:

Al—B1 Bl— Al
Al—B2 Bl— A2
A2—B1 B2— Al
A2—B2 B2— A2

This notation will be retained but the arrow will not be
displayed, for example, A1B1 means Al —Bl1, etc.

The basic probability generating function describing the
composition of the system in term of reaction states of
building units reads

Fo,(Z,2) = VZAZ%A [(1 — aa1)Zatunr + @a1éais]

[(1 — @p2)Zasune + @aréass]’
(A22)

+”BZ11§IB [(1 — ag1)Zgiunr + ag1€B1A]

X[(1 — ag2)Zpounr + ag2€p2al

Here, the pgf variables z associated with bonds are
replaced by & and these are a function of z by which the
types of bonds are distinguished, e.g., za1B1> Za2B1,- - -€tC.

§a1B = PaiBiZaiBl T Paig2ZaiB2 §A2 = Pa2BiZazBi T Pa2B22A282

EBia = PBiaiZBial T PBIA2ZBIA2  EB2A = PB2A1ZB2A1 T PB2A2ZB2A2

The structure of the equation and the subscripts of
variables z show that the succession of units A and B
can proceed in various sequences. The variable £, p
means that we consider bonds extending from unit A
via group Al. This bond can extend to unit B either
through group B1 or group B2. The probabilities of
these events are given by paipi and paigz, (Pai1+
paig2=1). Therefore, px;y; are transition probabilities
of a first-order Markov process, i.e. conditional
probability given group i on X has reacted, it forms a
bond with Y via group j. The transition probabilities are
a function of conversions of the reactive groups and
their values are calculated by solving the system of
differential equations for dyads as will be shown later.

Because we distinguish eight different types of bonds we
have eight pgf’s for the number of additional bonds
extending from units already bonded by one bond. They
are obtained by differentiation of pgf (A22)

0Fy,(Z,z)

Fpia1(Z,z) = oz
AIBI

X Ngiai

__ M, 2
=Z\ M —ap2)Zaounr T @a2(PazBiZazs1 + Pa2B22a282)]

(A23)
OFy,(Z.7)
Fpon1(Z,2) = ao— X Npoai
<ZA1B2
= ZWM(1 = ap2)Zagune + Ap2(PazsiZaze:
+ paspazazs)]’
0Fy,(Z,2)
Fpiar(Z,2) = I — X Ngia2
<A2BI
= Z%A{[(l — a1 Zatunr T @1 (PAIBIZAIBI
+ pais2zais2)I[(1 — @a2)Zasyn:
+ aar(Pa2B1Za2B1 T PA2B2ZA282)]
IFy,(Z,7)
Fpoar(Z,2) = 607 X Npaaz
<A2B2
= %A{[(l — @A) Zatunr T ¥a1(PAIBIZAIBI
+ paip2zais) (1 — @a2)Zaoune
+ aar(ParBiZazBi + Pa2B2Za282)]
IF o, (Z, 7)
Fpii1(Z,z) = 607 X Nagi = Zy"[(1 — a2)Zagun
<B1Al

+apr(Pe2oa1ZB2a1 T PB2A2ZB242)]
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1 0 0 0 0 TPBIAI®BI T PBI1A1OBI
0 1 0 TPB2Aa10B2  TPB2A1%B2 0 0
0 0 1 0 0 0 TPB1A2@B1  TPB1A2%BI
0 0 0 1 —PB2A20B2  —PB2A20B2 0 0
0 0 —PBIAI®AI  —PBIAIYAL 1 0 0 0
—2pA2B10A2  T2PA2BIOA2  TPA2BIOA2  TPA2BIOA2 0 1 0 0
0 0 TPA1B20A1 T PAIB2XAI 0 0 1 0
—2paB20A2  T2PaB20A2  TPA2B20A2  TPA2B20A2 0 0 0 1
oF, (Z.2) Note that pairs of values are the same. This is because the pairs
s z . _ . .
Frop1(Z,7) = 60;1 X N g of right hanq sides of the functl.ons F(z,Z) are the same. .
ZB1A2 The solution of the determinant Dg using the Symbolic
My Toolbox MATLAB® software after rearrangements gives
= Zg"[(1 — aB2)Zaounr + aB2(PB2AIZB2AI
Dg =1+ 2(pai1 — Pa21)(PB1A1 — PB2AIXAIXA20B1 OB)
+ PB2a2ZB242)]
—PazB1oa202(1 + ppoar)
0F,,(Z,z
Fap(Z,2) = ;L) X Naiga —Pa2B20a20B1(1 + PRia1) — PAIBIPB2A2%A1XB2
ZB2A1
My TPAIB2PB1A2XA1 AB]
=Zg"[(1 — ag)Zx1unr + aB1(PB1AIZBIAI (A25)
+PB1nZpIn)] Molecular weight averages. The number-average molecu-
lar weight is obtained by the same reasoning as before; it is
Fromn(Z.7) = 0F,(Z,2) YN equal to the mass per molecule. The number of molecules is
A2B2 0ZgaA2 AZB2 given by the number of building units minus number of bonds.

M,
=Zg°[(1 — ag1)Zatunr T @B1(PBIAIZBIAI
+ PBi1a27B1a2)]

Ny, are normalizers, so that Fx;y; (1,L1)=1.
The values of derivatives for z=Z =1 are denoted as

[aFBzAl (Z, Z)]
0za281 z=7=1

— pA2BI
=Fgial, etc.

and can be expressed by an 8 X 8 matrix of derivatives

B1AIl BlAl
Fgiat - Faom
~A2B2 ~A2B2
Fgiai - Froaz

The gel point condition is determined by the equality

B1Al B1Al
1 - FBlAl —1A2B2
Dg=| P =0 (A
A2B2 B2A2
—Fgial 1_FB2A2

In this particular case, Dg=

The number of half-bonds is obtained by differentiation of
Fy,(z,Z) with respect to all variables z, putting z=7Z=1,
F'y,(1,1). Thus

_ nAMA + ”BMB

M. =-4A"A BB
"I —F) (1L D2

(A26)

Because the number of half-bonds extending from A units
must be equal to that extending from B units (remembering

that pxjy1+pxjy2=1)
nAMA + nBMB _ nAMA + nBMB

M, = —
I —ng(ap; + agy)

A27
1— 2}1]3 43} ( )

where ag = (ag; + ap,)/2 is the conversion of all B groups.
The weight-average molecular weight is obtained from
the generating function W(Z)

W(Z) = mpZW*[1 — ap; + aar(Pa1UaIBI
+ paipauai) 11 — @ar + a0 (Passitaces
+ Paopattazea)] + mpZy"[1 — apy
+ agi(PpiaiUBial T PB1a2UB1A2) ][] — gy

+ apr(PeoaiUpoal T Pe2a2Upoan)] (A28)

where the components of the vector u(Z) are a function of
Za and Zg. These dependencies are determined by a set of
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recursive equations
L) =ZM1 —ap +
ugia1(Z) = Z,*[ apr + apa(ParBiUaBI
4 2
ParBattare2)]’s
Z) = ZVM1 —ap, + + :
ugoa1(Z) = Zy*[1 — apr + aar(parpittarsr + Pazsattase2)]’

ugiar(Z) = ZWM[1 — apy + aa1(ParsiUarpr + Paipatiaie:)]

X[ = apr + apr(Paspi#ace1 + Passatiare2)ls

M
upoa2(Z) = Z,M{[1 — ap + aa1(ParsiUaipr + Paip2taipa)]

X1 = apy + apr(Pazpitacei + Pacpattazg2)ls
upip1(Z) = Zy"[1 — apy + ey (Poartmoar + Pr2astipanr)l,
upop1(Z) = Zy*[1 — oy + apo(Poaiipoar + Proariipond)]l.
upip2(Z) = Zy"[1 — ap; + i (Ppiattpiar + Peiastipian)]l.

uprpo(Z) = ZI)!/IB[I —ag; T agi(Peiaisial T Peia2UBia2)]
(A29)

M,, is obtained by differentiation with respect to Z, and Zg:

M, = [aW(Z) aW(Z)]
7=1

9z, | oz
_ A B
= ma{My + api[parsi (a1 + uais1)
+ pars2(Uarpr + ta1s2)]
A B
+ 2aas[parsi (Uarp1 + tazp1)
A B
+ paopa(Uaapy + upop)1} + mp{My
A B
+ agilpeiai(UBia1 T UB1A1)
+ peia2(UBia2 T UB1A2)]
A B
+ agy(Poai (UB2a1 t+ UB2A1)
A B
+ Praa2(upraz + upaan)l} (A29a)

Here, the short-hand notations of values of derivatives
have the following meaning:

Upipy = {—auAle(Z)] Upim2
7/ P
— |:auA1B2(Z):| etc
0Zy |71

The set of values of derivatives of component of the
vector u is obtained from the vector u (Eq. (A29)) by
solving the set of linear Eq. (A30):

A _ A A
ugial = Ma + 200(Parg1Ua2B1 T Pa2B2UAB2)>
B _ B B
ugiar = 20a2(Pa2B1Ua2B1 T PA2B2tA2B2)>
A _ A B _ B
UB2A1l = UBJAl>  UB2A1 = UB2AILS
A A A
ugia2 = Mp + aa1(PaiB1UaiB1I T PAiB2UAIB2)
+ o1 T AB2)
a2 (ParBi1Ua2B1 T Pa2B2MA2B2)>
B _ B B
ugia2 = ®a1(PaiB1UAIBI T PA1B2UAIB2)
+ B + B
apr(ParBiUa2B1 T PA2B2UAB2)

(A30)
A _ A B _ B
Upoa2 = UB1A2>  UB2A2 = UB1A2S
A _ A A
up1gl = Ap2(PR2A1UB2A1 T PB2A2UB2A2):

B _ B B
uaigl = Mg + agr(Peaaitarsi + Pe2a2tB242)s

A _ A B _ B
UpoB1 = UAIBI> UA2B1I = UAIBI»

A _ A A
Usipz = @1 (PBiaIUBIAI T PBIA2UBIA2)

B _ B B
upigr = Mg + apa(Piaitaii + Peia2tais2)s

A _ B B _ B
UAdB2 = UAIB2>  UAZB2 = UAIB2

The solution of these 16 linear equations was obtained
using MATLAB Symbolic Toolbox®. The expressions for
the derivatives were substituted into Eq. (A29a) and M, was
calculated.

Transition probabilities. Instead of eight types of bonds
in which we distinguish the direction looking through the
bonds, there exist only 4 distinguishable bonds differing in
their composition irrespective of the bond direction:

AlB1
A2B1

AIB2
A2B2

For kinetically controlled systems controlled by irre-
versible bond formation, the concentrations of bonds are
determined by a system of differential equations and which
are a function of reaction variable (time or conversion).
Thus,
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d[A1B1
% = ky1[A1][B1]
= ki [Al]p(1 — aa))[B1]o(1 — agy),
da1Ba] _ ki2[A1][B2]
dr
= kip[Al]o(1 — aa)[B2]o(1 — agy),
d[A2B1
% = ky[A2][BI1]
t
= ky  [A2]p(1 — apr)[B1]o(1 — agy), (A31)
% = ky[A2][B2]

= kyr[A2]o(1 — apr)[B2]o(1 — ap,)

_d[A] _ _(d[Al] n d[A2]>

d - -
an dr dt dr

= ki1 [AL][B1] + k1o[A1][B2] + ky; [A2][B1]
+ ky[A2][B2]

The dependence of concentrations of bonds on time t is
transformed into the dependence on concentration of all
groups A, i.e., dependence on conversion of groups A

d[A1B1] _
dla]

< ki;[A1][B1]
kii[AT][B1] + ko [AT][B2] + kyy [A2][B1] + kpy[A2][B2] :
etc.

This equation can be further transformed factoring out
the initial concentration of B group, [B]y and considering
that that the ratios of the initial concentration of groups
[Al]o/[Alo=1/3, [A2]o/[Alo=2/3, [Bl]y/[Blo=1/2,
[B2]o/[B]o=1/2. Thus,

d[AIBI] _ &y (1/6)(1 — ax)(1 — agy)

[Blodara S ’
d[AIB2] _ kpp(1/6)(1 — ax)(1 — apy)
[Bloday S ’
(A32)
d[A2BI1] _ Ky (173)(1 — app)(1 — agy)
[Blodaa S ’
d[A2BI1] _ ky(173)(1 — apn)(1 — apy)
[Blodaa S
where

S =k (1/6)(1 — ax))(1 — agy) + kip(1/6)(1 — apap)(d
—apy) Tk (173)(1 — aan)(1 — agy) + kyp(1/3)(1

—ap)(l — apy)

This system of differential equations was solved
numerically and the integral values were used for calcu-
lation of transition probabilities p as a function of
conversion of A or B groups:

B [AIB1]
PAIBL = TATBI] + [AIB2]

paig2 = 1 — paisis

B [A2B1]
Pa2B1 = TADB1] + [A2B2]

Pae2 = | — passis (A33)

B [AIB1]
Peial = TATB1] + [A2B1]’

Peia2 = | — pgiais

_ [A1B2] _1—
PB2Al = [AIB2] + [A2B2] PB2B2 = PB2A1

A.2.1. Auxiliary interrelations

The relations derived above are functions of conversions
of functional groups aaj, ®az, @i, aps. They are
interdependent and are a function of conversion of all A
or B groups, as and ag. The relations between o1, ®az,
apy, ag, are determined as follows. The kinetics of
consumption of groups Al and A2 can be described as a
function of concentrations of groups Al, A2, Bl and B2

—% = ky 1 [A1][B1] + k»[A1][B2],
(A34)
- % =k [A2][B1] + ky,[A2][B2]

The four rate constants depend on reactivity of groups. In
the simplest case of additivity of Gibbs activation energies,

ki< kiakig  kip < kiakog ko % koakig  kyp % koakog

the rate constants are considered to be proportional to the
products of rate constants with a reference compound. If
the reaction variable is conversion of functional groups, the
structure build up is controlled by ratios of rate constants:

ki ko _kia 4+ ki _ky kg e
K KA T2 B
ki kyp  kop

ky  kpn ks

Under these conditions, the Eq. (A34) can be transformed
to

d[Al] _ kja[Al]  [A1]

= = A35
dA2]  kaalA2]  AA2] (A35)
The solution of this differential equation reads
[AT] [A2] «
In =k In or 1 —ap; = (1 —apy)™
TNTRT VI a1 = ( A2)
(A36)

[Al]g and [A2], are initial concentrations of reactive
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groups. Similarly, for ag;, ags
ag; =1 —(1 — ag,)*™ (A37)

In transforming Egs. (A36) and (A37), the following
balance equations are employed

30(A = 2(XA2 + [LINE 20(B = g + Ao

The derivation explained above is valid for any value of
conversions «, or ag. For highly-branched off-stoichio-
metric functional polymers, ag=1 and oy = 1/r4.

A.3. Hyperbranched polymers from BA> monomer'

To characterize the application potential of highly-
branched off-stoichiometric polymers, the M, and M,
values of classical hyperbranched polymers are compared.
Although the relations have already been derived in the past,
the generating function approach will be briefly explained
(cf. Ref. [36] pp. 136—1412 and Refs. [37] and [38]). If all A
groups have the same reactivity, the respective pgf’s have
the form

Fou(Z,2) = Z"[(1 — ap)Zpyn + apzag]

(A39)
[(1 — aa)Zaunr + @azpal®
Fa(Z,2) = Z"[(1 — ap)Zpynr + apzas]
(A40)
[(1 - aA)ZAunr + aAZBA]
Fap(Z,7) = Z™[(1 — ap)Zaun: + cazpal’ (A41)

The same procedure as above using the recursive
equation for u (i.e., F'o—M,, and F>u—>W—->W —>M,)
gives

M, M- My(1 — a/2)

M,
! (1 —ap)’

- o (A42)
1 — o
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