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Abstract

Formation of highly-branched off-stoichiometric polymers from AxCBy monomers has been described theoretically using a statistical

branching theory in which the irreversibility of bond formation was respected. The critical molar ratio (CMR) of A to B groups, i.e., such

excess of groups of one type beyond which the system does not gel and only soluble highly-branched polymers are formed, was calculated.

CMR depends on the functionality of the components and on the reactivity of functional groups involved in formation of bonds. For an

increasing excess of A groups over B groups, soluble A-functional polymers of decreasing molecular weight are formed. When

monofunctional monomer is added, the number-average molecular weights and degrees of polymerization as well as the number of functional

groups per molecule remain relatively low even at the CMR when the gel point is reached. When one A group in the A3 monomer has higher

reactivity than the remaining two and also in B2 where the reactivities of B groups are different, the value of CMR decreases from 2 towards

1.5, which is the limiting case. Important is that with increasing differences in reactivity the range of molecular weights can be extended and

the polydispersity can be suppressed. Functional highly-branched polymers of reasonable molecular weight and polydispersity can be

obtained, which in their application can compete with conventional hyperbranched polymers. The use of the information obtained in this

description of crosslinking of the highly-branched off-stoichiometric polymers is outlined.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer networks are prepared from precursors, i.e.

compounds carrying functional groups capable of bond

formation. Their functionality or functionality distribution

must be such that the system gels and a network is formed.

Some of the precursors are simple chemical compounds,

some others are specially designed functional structures

(oligomers), and yet others are mixtures of compounds of

varying functionality and molecular weight [1]. Low-

molecular-weight functional copolymers or hyperbranched

functional polymers obtained from ABf monomers can

serve as examples of such polydisperse precursors.
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For alternating AfACBfB systems (groups A and B give

bonds A–B), the earliest gelation and maximum crosslink

density is obtained in stoichiometric systems. That in off-

stoichiometric systems the gel point is shifted to higher

conversions of the minority groups has been recognized

since the derivation of the gelling condition [2]. However,

this phenomenon was employed much later in experimental

and theoretical studies as well as in practical applications.

Some producers of two-component epoxy-amine adhesives

used empirically the pre-reaction of a polyamine in large

excess with a diepoxide to increase the viscosity of the

amine hardener and to lower its vapor pressure. Later on, the

off-stoichiometry effect was used in epoxy-amine and

polyol-polyisocyanate systems to control the crosslink

density [3–10]. The critical molar ratio (CMR) of A:B or

B:A groups was defined [3] as the molar ratio at which

gelation took place at full conversion of minority groups and

beyond which the gel point could not be reached at all and

only soluble branched polymers were formed. The CMR
Polymer 46 (2005) 4265–4282
www.elsevier.com/locate/polymer

http://www.elsevier.com/locate/polymer


K. Dusek et al. / Polymer 46 (2005) 4265–42824266
values can be obtained experimentally very easily. These

values were discussed in terms of reactivity of functional

groups and intensity of cyclization reactions. For instance,

the shift of CMR of diepoxide-diamine systems could be

explained by the differences in reactivity of primary and

secondary amino groups in aliphatic and aromatic curing

agents [5,11].

The increasing interest in off-stoichiometric highly-

branched polyfunctional polymers in recent years [12–29]

has been induced by the development of hyperbranched

polymers synthesized by ACB/AB polymerization of

ABf or BAf monomers. Here, we will be using the

abbreviation BAf (e.g., BA2) to keep correspondence with

the A3–B2 systems. The structures of the highly-branched

polymers obtained by AfACBfB reaction and classical

hyperbranched polymers prepared from BAf monomers are

basically not different. Scheme 1 shows one of the

distributions of functional highly-branched molecules

obtained from A3 to B2 monomers bearing unreacted A

groups.

The generally lower price of starting components of Xf

type compared to BAf monomers and the wide range of

variation of architecture of group-bearing scaffold X makes

the off-stoichiometric highly-branched polymers especially

attractive. There is, however, a distinct difference between

the two classes: The hyperbranched systems bearing only

one focal group do not gel unless side reactions interfere,

but the system AfACBfB does gel in the window of molar

ratios of functional groups below the critical values, (rA)crit

or (rB)crit. This is, however, not the only difference. As we

shall see later, there is a distinct difference in the

dependence of weight-average molecular weight or poly-

dispersity on the number average molecular weight.

Several chemically different off-stoichiometric highly-

branched polymers have been investigated so far. The main

emphasis of experimental as well as theoretical studies was

concentrated on the degree of branching (DB); the key

quantity used for classical BAf hyperbranched polymers that

determines compactness of the molecules. Important

predictions about the effect of group reactivity and

polymerization regime on DB were made recently [21]

using kinetic method originally developed for the study of

DB of classical hyperbranched polymers [30,31].
Scheme 1.
In this contribution, we have focused on structure of the

off-stoichiometric highly-branched molecules designed for

their application as polymer networks precursors. We have

investigated theoretically the gelation limits and develop-

ment of molecular weight and functionality averages as a

function of initial composition and functional groups

reactivity. The use of information obtained for description

of the network formation process is also discussed.
2. Modeling of formation of highly-branched off-

stoichiometric polymers

For modeling of generation of branched structures, the

statistical theory of branching processes based on cascade

substitution and employing the formalism of probability

generating functions were used. This approach has been

applied to a variety of systems and branching problems

before (cf., e.g., Refs. [1,3–10]). In its ring-free version, this

approach does not consider formation of cycles before the

gel point, but does take into account uncorrelated circuit

closing beyond the gel point. The statistical approach is

rigorously applicable to systems without long-range sto-

chastic correlations and also, as was proved experimentally,

for many kinetically controlled systems, where the stochas-

tic correlations are not too strong (e.g., epoxide or

polyurethane networks [5,10]). Furthermore, the formalism

give easy access to various averages and the relations are

pre-prepared for the description of a crosslinking process

when these highly-branched functional polymers are further

crosslinked (cf., e.g., Ref. [32]). Here, we will be

considering primarily non-reacting systems, with only one

type of group, the other being completely consumed.

However, the treatment and the relations derived below

allow for characterization of ‘live’ systems containing both

unreacted groups A and B.

The plan for the analysis of formation and distributions of

the off-stoichiometric highly-branched functional polymers

is as follows:
1.
 To calculate the gelation limits in terms of critical molar

ratios (CMR) of A to B groups.
2.
 To calculate the dependence of number- and weight-

average molecular weights and, possibly, first and

second moments of functionality distributions as a

function of initial molar ratios of A to B groups beyond

CMR and to compare the correlations between poly-

dispersity and number-average molecular weight or

conversion of functional groups.

Here, we have analyzed the A3CA1–B2 systems with

equal reactivity of all A and all B groups, respectively, and

A3KB2 systems with groups of different reactivity. The

derivation of the respective equations is explained in the

Appendix A.

The structure of A3CA1KB2 systems was analyzed in



Scheme 2.
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detail in the post gel region in terms of sol fraction, dangling

chains, and elastically active network chains [33]. In the

Appendix A, the system A3CA1KB2 is described by Eqs.

(A1)–(A21).

The boundary between gelling systems and region of

branched polymers is determined by the critical value of the

molar ratio of A:B functional groups, rA, i.e., by (rA)critZ
([A]0/[B]0)crit (Eq. (A6))

ðrAÞcrit Z xAfðfA K1Þ (1)

where fA is the functionality of Af monomer (fAZ3 in our

case), xAf is the fraction of groups of the Af monomer in

mixture with the A1 monomer.

The number-average molecular weight of the highly-

branched polymer was calculated by Eq. (A8)

Mn Z
nA1MA1 CnAfMAf CnB2MB2

1K2aBnB2

(2)

where nA1, nAf, nB2 are molar fractions of components

indicated, and MA1, MAf, MB2 their molecular weights. The

molar fractions, n, can be expressed through molar ratio rA

and xAf or ratio of groups A in mono- (sA1) and

polyfunctional (sAf) component, respectively, as is shown

in the Appendix A. When the reaction goes to completion,

as is usually the case, the conversion of B-groups, aB,

reaches unity.

The weight-average molecular weight is given by Eq.

(A13), which, after substitution for the values of derivatives

of u gives for aBZ1 (aAZ1/rA) the relation

Mw ZmA1MA1 CmAf MAf C
fAðMB2 CMAÞ

1KxAfðfA K1Þ=rA

� �

CmB2 MB2 C
2½MA CMB2xAfðfA K1Þ=rA

1KxAfðfA K1Þ=rA

� �
(3)

where mA1ZnA1MA1=S; mAfZnAfMAf =S; mB2Z1K
mA1KmAf ; SZnA1MA1CnAfMAfCnB2MB2 are mass

fractions of the components. The first-moment and

second-moment average functionalities of the highly-

branched polymer are given by the following relations (cf.

Eqs. (A16)–(A21))

hfAi1 Z
ð1K1=rAÞðfAnAf CnA1Þ

1K2nB2

(4)

hfAi2 Z nAf fA 1K
1

rA

C
xAfðfA K1Þð1K1=rAÞC1

rAð1KxAfðfA K1Þ=rAÞ

� �

CnA1 1K
1

rA

� �

C2nB2

xAfðfA K1Þð1K1=rAÞC1

1KxAfðfA K1Þ=rA

(5)

ACB polyfunctional systems with groups of different

reactivity have higher potential to offer highly-branched

polymers of increased molecular weight and functionality.
Of the wide variety of combinations of reactivity differ-

ences, we have investigated the case, where the A3

molecule has one group of higher reactivity than the

remaining two and also the two B groups in B2 component

have different reactivity (Scheme 2).

For instance, the A(1) group is (much) more reactive than

the other two A(2) groups and the same is valid for groups

B(1) and B(2). Such situation arises in the case when two

functional groups of different reactivity are involved such as

the amine and hydroxy groups in diethanolamine or

diisopropylamine [22]. Also, a number diisocyanates have

groups of different reactivity.

Such A3KB2 system treated in Section A.2 of the

Appendix A is theoretically more complex than the

relatively simple A1CA3KB2. The simplicity of the latter

system is in the randomness of the reaction (equal and

independent reactivity of functional groups). It has been

shown that the solution obtained by application of statistical

theory is identical with the results of exact kinetic theory

(cf., e.g., [34,35]). In our case, it is easy to distinguish

between conversions of different functional groups existing

in the system. However, the bond assemblage procedure

must guarantee the irreversibility of formation of bonds of

the given type. We have used an approach based on first-

order irreversible Markovian process where the (eight)

transition probabilities are calculated from fractions of

dyads of reacted groups (four dyads). The transition

probabilities (Eq. (A33)) are functions of overall reaction

conversion and are obtained by numerical solution of a

system of differential equations for reacted groups dyads.

This is described in the Appendix A by Eqs. (A31)–(A32).

The transition probabilities are then used in the branching

process (Eqs. (A22)–(A30)). The basic pgf is described by

Eq. (A22)

F0nðZ; zÞZ nAZ
MA

A ½ð1KaA1ÞZA1unr CaA1x1B�

!½ð1KaA2ÞZA2unr CaA2x2B�
2 CnBZ

MB

B ½ð1KaB1Þ

!ZB1unr CaB1x1A�½ð1KaB2ÞZB2unr CaB2x2A� (6)

x1A Z pA1B1zA1B1 CpA1B2zA1B2 x2A Z pA2B1zA2B1 CpA2B2zA2B2

x1B Z pB1A1zB1A1 CpB1A2zB1A2 x2A Z pB2A1zB2A1 CpB2A2zB2A2

Eight types of (oriented) bonds are described by the vector

zZ(zA1B1,zA1B2,zA2B1,zA2B2,zB1A1,zB1A2,zB2A1,zB2A2), which
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corresponds to the same number of pgf’s FZ(FA1B1,FA1B2,

FA2B1,FA2B2,FB1A1,FB1A2,FB2A1,FB2A2) (Eq. (A23)). The gel

point condition is determined by 8!8 determinant (Eqs.

(A24) and (A25)). Because two components participate in the

structure build-up, the weight-average molecular weight is

calculated by differentiating the weight-fraction generating

function with respect to pgf variables ZA and ZB that identify

the property of the building unit (here, its molecular weight).

Thus,Mw is determined by 16 values of derivatives, which are

determined by 16 linear equations (A30). Due to extensive

degree of degeneration, the arithmetic relations are of

reasonable complexity.
 

Fig. 2. A3CA1KB2 equireactive systems: dependence of the number-

average (dashed line) and weight-average (full line) molecular weight on

the ratio of A to B groups, rA; for various contents of the monofunctional

component sA1 (Z0, 0.05, 0.1, 0.2, 0.5, 0.99 from right to left) (MA1Z300,

MA3Z600, MB2Z400).
3. Results and discussion

It is obvious that in the ideal A3KB2 system the critical

molar ratios (rA)critZ2(excess of A groups) or (rA)critZ
1/2(excess of B groups). Addition of a monofunctional

compound shifts the critical molar ratio from 2 to lower

values and eventually the system stops gelling at molar

ratios equal to one. The dependence of (rA)crit vs. xAf is

shown in Fig. 1

The system stops gelling when the numbers of A-groups

(not molecules) of mono- and trifunctional components are

equal. Addition of monofunctional components makes the

system ‘safer’ against possible gelation but, as we shall see,

other properties important for network formation are also

affected. It can be seen that the number-average molecular

weights remain rather low even at the onset of gelation when

the weight-average molecular weight diverges (Fig. 2).

However, the molecular weights of such precursors of

1200–1400 corresponding to number-average degree of

polymerization of about 4 are still in the range interesting

for certain applications. Better insight into the problem
Fig. 1. A3CA1KB2 equireactive systems: dependence of critical molar

ratio (rA)crit on the ratio of A groups of monofunctional component (NA1) to

groups of the fA-functional component (fANAf), sA1ZNA1/fANAf.
shows Fig. 3 and the functionality averages shown in Fig. 4.

Products with reasonable polydispersity and molecular

weight are obtained when the modification with A1 is

small (sA1Z0.05, 0.1)

The number-average functionality has reasonable values

of about 3 for modification with 10–20% monofunctional

component. At higher fractions of the monofuctional

component, the molecular weight as well as the number-

average functionality decreases with decreasing rA and a

non-negligible amount of zero-functional molecules is

produced. Using the Af monomer of higher fA does not

help much because one has to work with higher excess of A
Fig. 3. A3CA1 and B2 equireactive systems: interdependence of

polydispersity (PDZMw/Mn) and Mn for the molar ratios of the groups of

monofunctional to trifunctional monomers, sA1 indicated; (MA1Z300,

MA3Z600, MB2Z400).



Fig. 4. A3CA1 and B2 system: functionality averages hfAi1 (dashed) and hfAi2 in dependence on the ratio of A to B groups, rA, for different ratios of groups of

monofunctional to trifunctional monomers, sA1 (0, 0.1, 0.5, 0.99 indicated).
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groups to get the same polydispersity. The values of Mn for

the same polydispersity are even smaller.

Summarizing, highly-branched A-functional polymers

from polyfunctional A–B monomers with equireactive

groups have only a limited application value. The main
Fig. 5. Dependence of conversions of groups B(1) and B(2) on overall conv
disadvantage is a relatively low number-average molecular

weight at a composition at which Mw starts growing rapidly

and approaching the gel point. However, about 60–70%

potential bonds in the system can be preformed and Mn can

increase by a factor of 3–5. This can be technologically
 

 

ersion of B groups for values of reactivity ratios kCAZkCB indicated.



Fig. 6. (a)–(c) Dependence of selected transition probabilities for bonds pXiYj extending from group Xi to group Yj (pXiY1CpXiY2Z1) for the following values

of kCAZkCB: 6A 1, 6B 5, 6C 1000.
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(viscosity adjustment, lowering of shrinkage) and envir-

onmentally (lowering of VOC and toxic emissions)

important.

The A3KB2 systems offer much more versatility when

adjusting the groups reactivity. The system investigated

here can be denoted as Að1Þ
1 Að2Þ

2 KBð1Þ
1 Bð2Þ

1 where the
bracketed superscript denotes the group type and the

subscript as usual the number of groups. Since, at this

point, no correlation was made with experimental systems,

further simplifications have been adopted to demonstrate the

reactivity difference effect. Namely, the reactivity of groups

(1) was assumed to be higher or equal than that of groups (2)



Fig. 6 (continued)
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and, furthermore, the increase in reactivity of groups A was

assumed to be the same as that of groups B. There is,

however, no obstacle to investigate the effect of any

combinations of rate constant ratios kCA and kCB.

Three levels of differences in reactivity of A(1) relative to

A(2) (rate constants ratio kCA) and B(1) relative to B(2) ðkCBÞ

will be discussed: kCAZkCBZ1 (equal reactivity, random

case), kCAZkCBZ5 (moderate reactivity difference) and

kCAZkCBZ1000 (very strong reactivity difference). Fig. 5

shows the conversions of B(1) and B(2) groups.

For equal reactivity, the conversions are equal, for kCAZ
kCBZ5 the deviations from randomness is well expressed

and for kCAZkCBZ1000, initially only the more reactive

group reacts, and the less reactive starts reacting only after

the first one has been consumed.

The changes of transition probabilities for bonds as

functions of the degree structure build-up enable us to

understand the role of reactivity differences on passage from

gelling to non-gelling systems (Fig. 6(a)–(c)).

For the random case, all transition probabilities extend-

ing from A to B groups are equal to 1⁄2, for the B groups

those extending to A(2) groups are larger by a factor of 2

than those extending to A(1) groups (values 2/3 and 1/3)

because the concentration of A(2) groups is twice as large.

As the reactivity differences increase, B1/A1 and A1/
B1 bonds (i.e. dyads A1B1) (cf., Appendix A), are formed

initially almost exclusively followed by almost exclusive

formation of A2B2 and B2A2 bonds. Still, to the end of the

reaction a few percent of A(1) groups reacted with B(2)

groups because at that time B(1) groups had been practically
consumed. This fact will explain later the slow convergence

of the (rA)crit to the value of 1.5 characteristic of classical

hyperbranched polymers.

The dependence of CMR, (rA)crit, on the reactivity ratios

is displayed in Fig. 7. It is seen that for the reactivity ratio

about 5, the CMC decreases initially more steeply and the

decrease slows down after kCA and kCB reach the value of

about 10. For the highest values of kCA and kCB examined

(1000), (rA)crit, still has not reached the limiting value of

(rA)critZ1.5, for the reasons discussed above and it would

need another decade to approach it closely. When the excess

of A groups increases beyond the critical value, the

molecular weight averages decrease as is seen in Fig. 8

The maximum achievable number-average molecular

weight delimited by the dotted lines increases from about

1.2!103 for kCAZkCBZ1, to 2!103 for kCAZkCBZ5 and to

9!103 for kCAZkCBZ1000. This corresponds to degree of

polymerization of about 7, 12 and 50. For practical

application, the polydispersity should not exceed a certain

limit (e.g.,Mw/Mn should not exceed the value 3–4, cf. Fig. 9),

which corresponds to degrees of polymerization of 5–25.

The simulation also shows the molecular weights build

up for a certain value of molar ratio, rA. From Fig. 10, one

can see that the molecular weight remains low until the very

end of the reaction when the increase is getting steep. Here,

the value of rA is equal to (rA)crit and Mw and polydispersity

diverge always at aB equal to 1. At rAO(rA)crit, Mw does not

diverge at all. When the increase of polydispersity during

structure build-up is plotted against Mn (Fig. 11) and the

initial portion is enlarged, one can observe for kCAZkCBZ



Fig. 7. Dependence of the critical molar ratio (CMR), (rA)crit, for polyaddition of the Að1Þ
1 Að2Þ

2 and Bð1Þ
1 Bð2Þ

1 components on the reactivity ratios of A(1) to A(2), kCA,

and B(1) to B(2), kCB groups, kCAZkCB.
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1000 a strange phenomenon (Fig. 11(a,b)) that the

polydispersity after passage through a small maximum

decreases to a value that is smaller than the initial value and

approaches 1.
Fig. 8. Dependence of the number- and weight-average molecular weights of the

ratios of A(1) to A(2), kCA, and B(1) to B(2), kCB groups indicated, kCAZkCB; molecul
This can be explained by in situ formation of a compound

A3KB2 from 1 molecule of monomer Að1Þ
1 Að2Þ

2 and 1

molecule of Bð1Þ
1 Bð2Þ

1 . Closer inspection shows, however, that

the compound is not fully pure (polydispersity index about
Að1Þ
1 Að2Þ

2 KBð1Þ
1 Bð2Þ

1 polymer on the molar ratio of A:B groups, rA, reactivity

ar weight of the components A and B, MAZ129, MBZ222.



Fig. 9. Dependence of polydispersity index of the Að1Þ
1 Að2Þ

2 KBð1Þ
1 Bð2Þ

1 polymer on the molar ratio of A:B groups, rA, reactivity ratios of A(1) to A(2), kCA, and B(1)

to B(2), kCB groups indicated, kCAZkCB; molecular weight of the components A and B, MAZ129, MBZ222.
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1.03) and this is the reason for the fact that the limiting value

of (rA)critZ1.5 has not yet been reached for

kCAZkCBZ1000.

In Fig. 12, the plot of polydispersity index vs. Mn is used

for comparison of off-stoichiometric highly-branched poly-

mers with classical BA2 hyperbranched polymer, for which

the molecular weight of the hyperbranched monomer is

equal to the sum of molecular weights of A3CB2. Fig. 12
Fig. 10. Dependence of polydispersity index of the Að1Þ
1 Að2Þ

2 KBð1Þ
1 Bð2Þ

1 polymer on

B(2), kCB groups indicated, kCAZkCB; molecular weight of the components A and B
shows that off-stoichiometric A3CB2 polymers with strong

differences in reactivity of functional groups A are fully

equivalent to hyperbranched polymers in the range of

molecular weights up to approximately 10,000 (Pnz50–60

based on A3 and B2 monomers or Pnz25–30 based on BA2

monomer).

The difference compared to Fig. 11 is that Fig. 11

describes the evolution of Mn and Mw for rAZ(rA)crit as a
conversion of B groups for reactivity ratios of A(1) to A(2), kCA, and B(1) to

, MAZ129, MBZ222.



Fig. 11. (a) Interdependence of polydispersity index of the Að1Þ
1 Að2Þ

2 KBð1Þ
1 Bð2Þ

1 polymer and Mn during polymer formation for reactivity ratios of A(1) to A(2), kCA,

and B(1) to B(2), kCB groups indicated, kCAZkCB; molecular weight of the components A and B, MAZ129, MBZ222; (b) Enlarged part of the figure.
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function of conversion aB, whereas in Fig. 12 the

dependences correspond to various values of rA for aBZ
1. We see again the characteristic initial decrease of the

polydispersity index caused by the initial formation of the

A3CB2 ‘compound’. The polydispersity of the off-

stoichiometric polymer for kCAZkCBZ1000 is even lower

than the polydispersity of the hyperbranched polymer. This
feature can be explained by the fact that the molecular

weight of hyperbranched monomer increases by BA2

increments whereas in the A3KB2 case molecules like

(A3)2B2, or (A3)3(B2)2 also exist. Morover, the minimum

polydispersity in the A3KB2 case is reached for molecular

weight, which is somewhat higher than the molecular

weight of the BA2 unit.



Fig. 12. Interdependence of polydispersity index of the Að1Þ
1 Að2Þ

2 KBð1Þ
1 Bð2Þ

1 polymer and Mn obtained for various values of rA (cf. Fig. 10) and comparison with

the same dependence for the random hyperbranched polymers obtained from BA2 monomer. Reactivity ratios of A(1) to A(2), kCA, and B(1) to B(2), kCB groups

indicated, kCAZkCB; molecular weight of the components A and B, MAZ129, MBZ222.
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4. Conclusions

The formation of highly-branched off-stoichiometric

polymers from AxCBy monomers has been described by

the theory of branching processes in which the irreversi-

bility of bond formation was respected. This treatment

offers prediction of the critical molar ratio (CMR), (rA)critZ
[A]0/[B]0, beyond which the system does not gel and only

soluble highly-branched polymers are formed. The value of

CMR depends first of all on functionality of the components

and also on the reactivity of functional groups involved in

formation of bonds. For the ideal A3KB2 system, the CMR

for the A:B groups, (rA)crit, is equal to 2. For an increasing

excess of A groups over B groups, soluble A-functional

polymers of decreasing molecular weight are formed. If

(rA)crit is lower than 2, the system gels and non-extractable

crosslinked polymer is present. The value of CMR can be

lowered by addition of a monofunctional monomer or using

A3 and B2 monomers with groups of different reactivity.

The effect of modification of the functionality of the A

component was demonstrated by the A3CA1KB2 system

in which a monofunctional component A1 was added to the

trifunctional component A3. The excess of A groups

characterized by (rA)crit decreased from 2 to 1 (i.e., [A]0Z
[B]0)) when the fraction of A groups of A1 was equal to that

of A3 (nA1Z3nA3). The number-average molecular weights

and degrees of polymerization as well as the number of

functional groups per molecule remain relatively low even
at CMR when the gel point is reached. Therefore, the

applications are limited by this factor.

A system denoted as Að1Þ
1 Að2Þ

2 KBð1Þ
1 Bð2Þ

1 , in which groups

A(1)hA1 are more reactive than groups A(2)hA2 and the

same holds for B(1)hB1 vs. B(2)hB2 groups, was

investigated in detail. The relative reactivity of A1 to A2

group and B1 to B2 group varied in the range of kZ1–1000.

With increasing differences in reactivity (increasing k), the

A1KB1 and A2KB2 become increasingly dominant over

the A1KB2 and A2KB1 bonds and CMR decreases from 2

to 1.5. However, even for kZ1000, (rA)critZ1.55 and the

convergence to the value of 1.50 is slow. Important is that

with increasing differences in reactivity the polydispersity

can be suppressed. The functional highly-branched poly-

mers obtained in the range of kR10 have Mn of several

thousands Daltons and in their application can compete with

conventional hyperbranched polymers.

The relations derived using the statistical branching

theory have implicitly built-in the information on the

unreacted functional groups and can be further used for

description of crosslinking of these off-stoichiometric

polymers with a crosslinking monomer (component C) by

which A–C bonds are formed. For example, equations (A2)

and (A22) contain the pgf variables ZAunr, and ZA1unr and

ZA1unr, respectively. When these polymers are randomly

crosslinked, the transformation to be made is of the type

ZAunr/ ð1KaACÞZAunr CaACzAC
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where aAC is the degree of conversion of A groups into

A–C bonds and zAC is the pgf variable identifying A/C

bonds. The treatment can be further refined if A groups of

different reactivity are present in the highly-branched off-

stoichiometric polymer.
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Appendix A. Derivation of relations for critical molar

ratios and molecular weight and functionality averages

A.1. AfCA1KB2 system with equal and independent

reactivity of functional groups

The basic information on units, bonds and unreacted

functional groups is contained in the probability generating

function F0n(z,Z)

F0nðz;ZÞZ nA1Z
XA1

A1 ½ð1KaAÞZAunr CaAzB�

CnAfZ
XAf

Af ½ð1KaAÞZAunr CaAzB�
fA

CnB2Z
XB2

B2 ½ð1KaBÞZBunr CaBzAÞ
2 (A1)

where nA1, nAf, nB2 are molar fractions of components A1,

Af and B2, respectively. The variables of the pgf’s Z
XA1

A1 ,

ZAunr, zB (for A1) count, respectively, a property of the unit

(e.g. molecular weight of A1), number of unreacted

functional groups A, and number of bonds extending from

A to B units; zA is associated with bonds extending from B

to A units, and aA and aB are conversions of A and B

groups, respectively.

The molar fractions n can be expressed through the

fraction of the A-groups of monofunctional

component xA1 or the ratio sA1 as follows:

nA1 Z
NA1

NA1 CNAf CNB2

; nAf Z
NAf

NA1 CNAf CNB2

;

nB2 Z 1KnA1 KnAf ; xA1 Z
NA1

NA1 C fANAf

;

xAf Z
fANAf

NA1 C fANAf

; sA1 Z
NA1

fANAf

; sAf Z
fANAf

NA1

;

rA Z
NA1 C fANAf

2NB2

where N are number of moles of components. For instance,
expressing n through x and rA gives

nA1 Z
2fArAxA1

2rAðfAxA1 CxAfÞC fA
;

nAf Z
2rAxAf

2rAðfAxA1 CxAfÞC fA
; nB2 Z 1KnA1 KnAf ;

xA1 Z
nA1

nA1 C fAnAf

; xAf Z 1KxA1

(A2)

The pgf for additional bonds extending from units already

bound to another unit (in the preceding generation) is obtained

by differentiation, as shown in Eqs. (A3) and (A4)

FAðzB;ZÞZ
vF0nðz;ZÞ

vzB

!NA

Z xA1Z
XA1

A1 CxAfZ
XAf

Af ½ð1KaAÞZAunr CaAzB�
fAK1

(A3)

FBðzB;ZÞZ
vF0nðz;ZÞ

vzA

!NB ZZ
XB2

B2 ½ð1KaBÞZBunrCaBzA�
2

(A4)

whereNA andNB are normalizers, so thatFA(1,1)ZFA(1,1)Z
1; xA1 and xAf are molar fractions of A groups in component A1

and Af, respectively.

The gel point is determined only by structure connec-

tivity and molecular weight and number of unreacted groups

are irrelevant, i.e., Z
XA1

A1 ZZAunrZ1. For formation of an

infinite path of bonds, the average number of bonds

extending from a unit on generation i to units in generation

iC1 (iO0) must be equal to 1

vFAð1; zBÞ

vzB

vFBð1; zAÞ

vzA

� �
zAZzBZ1

hFB
AF

B
A

Z xAfðfA K1ÞaAaB Z 1 (A5)

where FB
A and FB

A are shorthand notations for the values of

derivatives on the left-hand side of Eq. (A5).

For excess of A groups, the critical molar ratio ðrAÞcritZ
ð½A0�=½B0�ÞcritZ ððfAnAfCnA1Þ=2nB2Þcrit is obtained from the

condition aBZ1

ðrAÞcrit Z xAfðfA K1Þ (A6)

From this equation, one can find that the critical value of

xAf, fraction of A groups of the polyfunctional component,

(xAf)crit, when rA drops to 1

ðxAfÞcrit Z 1=ðfA K1Þ (A7)

This is the lowest possible content of the polyfunctional

monomer in mixture with the monofunctional one at which

the system can gel. For fAZ3, (xAf)critZ1/2 and (sAf)critZ1.
A.1.1. Molecular weight averages

The number-average molecular weight of the highly-

branched polymer is given by the weights of the building
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units per molecule. The number of molecules is given by

the number of building units minus the number of bonds.

The number of bonds is given by the value of derivatives

of the function F0n(z,Z); NbondsZ ðvF0n=vzAÞzAZzBZ1Z
ðvF0n=vzBÞzAZzBZ1Z ðnA1C fAnAf ÞaAZ2nB2aB,

Mn Z
nA1MA1 C fAnAfMAf CnB2MB2

1K2nB2aB

(A8)

The weight-average molecular weight is derived from the

weight fraction generating function, W(Z(u)), in which the

distribution of degrees of polymerization is implicitly

generated through recursive equations of variable u. Note

that u is a function of pgf variables bearing information on the

structural units, Z
MA1

A ;Z
MAf

A ;Z
MB2

B . Thus

WðZðuÞÞZmA1Z
MA1

A ½1KaA CaAuB�C

mAfZ
MAf

A ½1KaA CaAuB�
fAC

mB2Z
MB2

B ½1KaB CaBuA�
2

(A9)

where mA1, mAf, mB2 are mass fractions of initial components

mA1 Z
nA1MA1

nA1MA1 CnAfMAf CnB2MB2

;

mAf Z
nAfMAf

nA1MA1 CnAfMAf CnB2MB2

;

mB2 Z 1KmA1 KmAf

and the recursive equations read

uA Z Z
MA1

A ð1KxAfÞCZ
MAf

A xAf½1KaA CaAuB�
fAK1

(A10)

uB Z Z
MB2

B ð1KaB CaBuAÞ (A11)

Since the molecular weight average is obtained by

differentiation of W(Z(u))

Mw Z ½vWðZðuÞÞ=vZA CvWðZðuÞÞ=vZB�ZZ1 (A12)

that is

Mw ZmA1MA1 CCmAf½MAf C fAaAðu
A
B CuB

BÞ�

CmB2½MB2 C2aBðu
A
A CuB

AÞ� (A13)

one has to find the derivatives of uA and uB with respect to ZA

and ZB

uB
Ah

vuAðZÞ

vZA

� �
ZAZZBZ1

etc:

explicitly

uA
A Z xAf½MAf C ðfA K1ÞaAu

A
B�C ð1KxAfÞMA1;

uB
A Z xAfðfA K1ÞaAu

B
B; uA

B ZaBu
A
A; uB

B ZMB2 CaBu
B
A

(A14)
The solution for the four variables reads

uA
A Z

xAfMAf C ð1KxAfÞMA1

1KD
;

uB
A Z

xAfðfA K1ÞaAMB2

1KD
Z

�MA

1KD
;

uA
B Z

aB½xAfMAf C ð1KxAfÞMA1�

1KD
Z

aB
�MA

1KD
;

uB
B Z

MB2

1KD
; DZ xAfðfA K1ÞaAaB

(A15)

Note that for highly-branched off-stoichiometric networks,

aBZ1 and aAZ1/rA.
A.1.2. Averages of functionality distribution

To obtain the first- and second-moment average of the

number of functional groups per molecule, one proceeds

similarly as in the case of molecular weights, but the pgf

variables ZAunr and ZBunr are considered instead of those

monitoring the molecular weight. Thus, the function F0n is

changed to U0n (Eq. (A16), UZunreacted); as before, zA

and zB remain to be variables related to bonds B/A and

A/B, respectively. Here. The condition aBZ1 was

applied.

U0nðz;ZÞZ nA1½ð1KaAÞZAunr CaAzB�C

nAf½ð1KaAÞZAunr CaAzB�
fAC

nB2½ð1KaBÞZBunr CaBzA�
2

Z nA1½ð1KaAÞZAunr CaAzB�C

nAf½ð1KaAÞZAunr CaAzB�
fA CnB2z

2
A

(A16)

Using the same reasoning as in the case of number-

average molecular weight and the fact that, one get for hfAi1

hfAi1 Z
ð1KaAÞðfAnAf CnA1Þ

1K2nB2

(A17)

The second moment average of functionality distribution

defined as

hfAi2 Z

PN
iZ1 i

2aiPN
iZ1 iai

is derived from

U2ðz;ZÞZ nA1½ð1KaAÞZAunr CaAuB�C

nAf½ð1KaAÞZAunr CaAuB�
fA CnB2u

2
A

(A18)

with

uA Z xA1 CxAf½ð1KaAÞZAunr CaAuB�
fAK1; uB Z uA

(A19)

giving
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uA
A Z

xAfðfA K1Þð1KaAÞ

1KD
; uB

A Z
1

1KD
;

uA
B Z

xAfðfA K1Þð1KaAÞ

1KD
; uB

B Z
1

1KD

with DZ xAfðfA K1ÞaA

(A20)

Therefore

hfAi2 Z nAf fA½1KaA CaAðu
A
B CuB

BÞ�C

nA1ð1KaAÞC2nB2ðu
A
A CuB

AÞ

(A21)

Note that aAZ1/rA.
A.2. A3KB2 system with unequal reactivity of functional

groups

We will consider reaction of two monomers A3

(Að1Þ
1 Að2Þ

2 and B2 (B(1)B(2)) having A-groups of different

reactivity (A(1)hA1 and A(2))hA2) and B-groups of

different reactivity (B(1)hB1 and B(2)hB2). No

substitution effect (change of reactivity as a result of

reaction) and no cyclization are considered. The degrees

of conversion of functional groups A1 and A2 as well

as B1 and B2 into bonds aA1, aA2 and aB1, aB2,

respectively, are different. Also, the bonds leading from

groups Ai to Bj and Bj to Ai are to be distinguished.

The relations will be derived first as functions of

conversion of functional groups and then conditions

characteristic of highly-branched off-stoichiometric sys-

tems (aBZ1, aAZ1/rA) will be introduced.

The following bonds connecting the functional groups

are considered:

A1/B1 B1/A1

A1/B2 B1/A2

A2/B1 B2/A1

A2/B2 B2/A2

This notation will be retained but the arrow will not be

displayed, for example, A1B1 means A1/B1, etc.

The basic probability generating function describing the

composition of the system in term of reaction states of

building units reads

F0nðZ; zÞZ nAZ
MA

A ½ð1KaA1ÞZA1unr CaA1xA1B�

½ð1KaA2ÞZA2unr CaA2xA2B�
2

CnBZ
MB

B ½ð1KaB1ÞZB1unr CaB1xB1A�

!½ð1KaB2ÞZB2unr CaB2xB2A�

(A22)

Here, the pgf variables z associated with bonds are

replaced by x and these are a function of z by which the

types of bonds are distinguished, e.g., zA1B1, zA2B1,.etc.
xA1B Z pA1B1zA1B1 CpA1B2zA1B2 xA2B Z pA2B1zA2B1 CpA2B2zA2B2

xB1A Z pB1A1zB1A1 CpB1A2zB1A2 xB2A Z pB2A1zB2A1 CpB2A2zB2A2

The structure of the equation and the subscripts of

variables z show that the succession of units A and B

can proceed in various sequences. The variable xA1B

means that we consider bonds extending from unit A

via group A1. This bond can extend to unit B either

through group B1 or group B2. The probabilities of

these events are given by pA1B1 and pA1B2, (pA1B1C
pA1B2Z1). Therefore, pXiYj are transition probabilities

of a first-order Markov process, i.e. conditional

probability given group i on X has reacted, it forms a

bond with Y via group j. The transition probabilities are

a function of conversions of the reactive groups and

their values are calculated by solving the system of

differential equations for dyads as will be shown later.

Because we distinguish eight different types of bonds we

have eight pgf ’s for the number of additional bonds

extending from units already bonded by one bond. They

are obtained by differentiation of pgf (A22)

FB1A1ðZ; zÞZ
vF0nðZ; zÞ

vzA1B1

!NB1A1

ZZ
MA

A ½ð1KaA2ÞZA2unrCaA2ðpA2B1zA2B1 CpA2B2zA2B2Þ�
2

(A23)

FB2A1ðZ; zÞZ
vF0nðZ; zÞ

vzA1B2

!NB2A1

Z Z
MA

A ½ð1KaA2ÞZA2unr CaA2ðpA2B1zA2B1

CpA2B2zA2B2Þ�
2

FB1A2ðZ; zÞZ
vF0nðZ; zÞ

vzA2B1

!NB1A2

Z Z
MA

A f½ð1KaA1ÞZA1unr CaA1ðpA1B1zA1B1

CpA1B2zA1B2Þ�½ð1KaA2ÞZA2unr

CaA2ðpA2B1zA2B1 CpA2B2zA2B2Þ�

FB2A2ðZ; zÞZ
vF0nðZ; zÞ

vzA2B2

!NB2A2

Z Z
MA

A f½ð1KaA1ÞZA1unr CaA1ðpA1B1zA1B1

CpA1B2zA1B2Þ�½ð1KaA2ÞZA2unr

CaA2ðpA2B1zA2B1 CpA2B2zA2B2Þ�

FA1B1ðZ; zÞZ
vF0nðZ; zÞ

vzB1A1

!NA1B1 Z Z
MB

B ½ð1KaB2ÞZA2unr

CaB2ðpB2A1zB2A1 CpB2A2zB2A2Þ�



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 KpB1A1aA1 KpB1A1

K2pA2B1aA2 K2pA2B1aA2 KpA2B1aA2 KpA2B1

0 0 KpA1B2aA1 KpA1B2

K2pA2B2aA2 K2pA2B2aA2 KpA2B2aA2 KpA2B2

���������������������
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FA2B1ðZ; zÞZ
vF0nðZ; zÞ

vzB1A2

!NA2B1

Z Z
MB

B ½ð1KaB2ÞZA2unr CaB2ðpB2A1zB2A1

CpB2A2zB2A2Þ�

FA1B2ðZ; zÞZ
vF0nðZ; zÞ

vzB2A1

!NA1B2

Z Z
MB

B ½ð1KaB1ÞZA1unr CaB1ðpB1A1zB1A1

CpB1A2zB1A2Þ�

FA2B2ðZ; zÞZ
vF0nðZ; zÞ

vzB2A2

!NA2B2

Z Z
MB

B ½ð1KaB1ÞZA1unr CaB1ðpB1A1zB1A1

CpB1A2zB1A2Þ�

NXiYj are normalizers, so that FXiYj (1,1)Z1.

The values of derivatives for zZZZ1 are denoted as

vFB2A1ðZ; zÞ

vzA2B1

� �
zZZZ1

hFA2B1
B2A1 ; etc:

and can be expressed by an 8!8 matrix of derivatives

FB1A1
B1A1 . FB1A1

A2B2

«

«
1

«

«
FA2B2

B1A1 / FA2B2
B2A2

0
BBB@

1
CCCA

The gel point condition is determined by the equality

DG Z

1KFB1A1
B1A1 / / / KFB1A1

A2B2

« 1 «

« 1 «

« 1 «

KFA2B2
B1A1 / / / 1KFB2A2

B2A2

�������������

�������������
Z 0 (A24)

In this particular case, DGZ
0 0 KpB1A1aB1 KpB1A1aB1

KpB2A1aB2 KpB2A1aB2 0 0

0 0 KpB1A2aB1 KpB1A2aB1

KpB2A2aB2 KpB2A2aB2 0 0

aA1 1 0 0 0

aA2 0 1 0 0

aA1 0 0 1 0

aA2 0 0 0 1

���������������������

Note that pairs of values are the same. This is because the pairs

of right-hand sides of the functions F(z,Z) are the same.

The solution of the determinant DG using the Symbolic

Toolbox MATLABw software after rearrangements gives

DG Z 1C2ðpA1B1 KpA2B1ÞðpB1A1 KpB2A1ÞaA1aA2aB1aB2

KpA2B1aA2aB2ð1CpB2A1Þ

KpA2B2aA2aB1ð1CpB1A1ÞKpA1B1pB2A2aA1aB2

KpA1B2pB1A2aA1aB1

(A25)

Molecular weight averages. The number-average molecu-

lar weight is obtained by the same reasoning as before; it is

equal to the mass per molecule. The number of molecules is

given by the number of building units minus number of bonds.

The number of half-bonds is obtained by differentiation of

F0n(z,Z) with respect to all variables z, putting zZZZ1,

F0
0n(1,1). Thus

Mn Z
nAMA CnBMB

1KF 0
0nð1; 1Þ=2

(A26)

Because the number of half-bonds extending from A units

must be equal to that extending from B units (remembering

that pXjY1CpXjY2Z1)

Mn Z
nAMA CnBMB

1KnBðaB1 CaB2Þ
Z

nAMA CnBMB

1K2nBaB

(A27)

where aBZ ðaB1CaB2Þ=2 is the conversion of all B groups.

The weight-average molecular weight is obtained from

the generating function W(Z)

WðZÞZmAZ
MA

A ½1KaA1 CaA1ðpA1B1uA1B1

CpA1B2uA1B2Þ�
2½1KaA2 CaA2ðpA2B1uA2B1

CpA2B2uA2B2Þ�CmBZ
MB

B ½1KaB1

CaB1ðpB1A1uB1A1 CpB1A2uB1A2Þ�½1KaB2

CaB2ðpB2A1uB2A1 CpB2A2uB2A2Þ� (A28)

where the components of the vector u(Z) are a function of

ZA and ZB. These dependencies are determined by a set of
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recursive equations

uB1A1ðZÞZ Z
MA

A ½1KaA2 CaA2ðpA2B1uA2B1

CpA2B2uA2B2Þ�
2;

uB2A1ðZÞZ Z
MA

A ½1KaA2 CaA2ðpA2B1uA2B1 CpA2B2uA2B2Þ�
2;

uB1A2ðZÞZ Z
MA

A f½1KaA1 CaA1ðpA1B1uA1B1 CpA1B2uA1B2Þ�

!½1KaA2 CaA2ðpA2B1uA2B1 CpA2B2uA2B2Þ�;

uB2A2ðZÞZ Z
MA

A f½1KaA1 CaA1ðpA1B1uA1B1 CpA1B2uA1B2Þ�

!½1KaA2 CaA2ðpA2B1uA2B1 CpA2B2uA2B2Þ�;

uA1B1ðZÞZ Z
MB

B ½1KaB2 CaB2ðpB2A1uB2A1 CpB2A2uB2A2Þ�;

uA2B1ðZÞZ Z
MB

B ½1KaB2 CaB2ðpB2A1uB2A1 CpB2A2uB2A2Þ�;

uA1B2ðZÞZ Z
MB

B ½1KaB1 CaB1ðpB1A1uB1A1 CpB1A2uB1A2Þ�;

uA2B2ðZÞZ Z
MB

B ½1KaB1 CaB1ðpB1A1uB1A1 CpB1A2uB1A2Þ�

(A29)

Mw is obtained by differentiation with respect to ZA and ZB:

Mw Z
vWðZÞ

vZA

C
vWðZÞ

vZB

� �
ZZ1

ZmAfMA CaA1½pA1B1ðu
A
A1B1 CuB

A1B1Þ

CpA1B2ðu
A
A1B2 CuB

A1B2Þ�

C2aA2½pA2B1ðu
A
A2B1 CuB

A2B1Þ

CpA2B2ðu
A
A2B2 CuB

A2B2Þ�gCmBfMB

CaB1½pB1A1ðu
A
B1A1 CuB

B1A1Þ

CpB1A2ðu
A
B1A2 CuB

B1A2Þ�

CaB2ðpB2A1ðu
A
B2A1 CuB

B2A1Þ

CpB2A2ðu
A
B2A2 CuB

B2A2Þ�g (A29a)

Here, the short-hand notations of values of derivatives

have the following meaning:

uA
A1B2h

vuA1B2ðZÞ

vZA

� �
ZZ1

; uB
A1B2

h
vuA1B2ðZÞ

vZB

� �
ZZ1

; etc:
The set of values of derivatives of component of the

vector u is obtained from the vector u (Eq. (A29)) by

solving the set of linear Eq. (A30):

uA
B1A1 ZMA C2aA2ðpA2B1u

A
A2B1 CpA2B2u

A
A2B2Þ;

uB
B1A1 Z 2aA2ðpA2B1u

B
A2B1 CpA2B2u

B
A2B2Þ;

uA
B2A1 Z uA

B1A1; uB
B2A1 Z uB

B2A1;

uA
B1A2 ZMA CaA1ðpA1B1u

A
A1B1 CpA1B2u

A
A1B2Þ

CaA2ðpA2B1u
A
A2B1 CpA2B2u

A
A2B2Þ;

uB
B1A2 ZaA1ðpA1B1u

B
A1B1 CpA1B2u

B
A1B2Þ

CaA2ðpA2B1u
B
A2B1 CpA2B2u

B
A2B2Þ;

uA
B2A2 Z uA

B1A2; uB
B2A2 Z uB

B1A2;

uA
A1B1 ZaB2ðpB2A1u

A
B2A1 CpB2A2u

A
B2A2Þ;

uB
A1B1 ZMB CaB2ðpB2A1u

B
A2B1 CpB2A2u

B
B2A2Þ;

uA
A2B1 Z uA

A1B1; uB
A2B1 Z uB

A1B1;

uA
A1B2 ZaB1ðpB1A1u

A
B1A1 CpB1A2u

A
B1A2Þ;

uB
A1B2 ZMB CaB2ðpB1A1u

B
A1B1 CpB1A2u

B
A1B2Þ;

uA
A2B2 Z uB

A1B2; uB
A2B2 Z uB

A1B2

(A30)

The solution of these 16 linear equations was obtained

using MATLAB Symbolic Toolboxw. The expressions for

the derivatives were substituted into Eq. (A29a) and Mw was

calculated.

Transition probabilities. Instead of eight types of bonds

in which we distinguish the direction looking through the

bonds, there exist only 4 distinguishable bonds differing in

their composition irrespective of the bond direction:

A1B1 A1B2

A2B1 A2B2

For kinetically controlled systems controlled by irre-

versible bond formation, the concentrations of bonds are

determined by a system of differential equations and which

are a function of reaction variable (time or conversion).

Thus,
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d½A1B1�

dt
Z k11½A1�½B1�

Z k11½A1�0ð1KaA1Þ½B1�0ð1KaB1Þ;

d½A1B2�

dt
Z k12½A1�½B2�

Z k12½A1�0ð1KaA1Þ½B2�0ð1KaB2Þ;

d½A2B1�

dt
Z k21½A2�½B1�

Z k21½A2�0ð1KaA2Þ½B1�0ð1KaB1Þ;

d½A2B2�

dt
Z k22½A2�½B2�

Z k22½A2�0ð1KaA2Þ½B2�0ð1KaB2Þ

and K
d½A�

dt
ZK

d½A1�

dt
C

d½A2�

dt

� �

Z k11½A1�½B1�Ck12½A1�½B2�Ck21½A2�½B1�

Ck22½A2�½B2�

(A31)

The dependence of concentrations of bonds on time t is

transformed into the dependence on concentration of all

groups A, i.e., dependence on conversion of groups A

d½A1B1�

d½A�
Z

!
k12½A1�½B1�

k11½A1�½B1�Ck12½A1�½B2�Ck21½A2�½B1�Ck22½A2�½B2� «
etc:

This equation can be further transformed factoring out

the initial concentration of B group, [B]0 and considering

that that the ratios of the initial concentration of groups

[A1]0/[A]0Z1/3, [A2]0/[A]0Z2/3, [B1]0/[B]0Z1/2,

[B2]0/[B]0Z1/2. Thus,

d½A1B1�

½B�0daA

Z
k11ð1=6Þð1KaA1Þð1KaB1Þ

S
;

d½A1B2�

½B�0daA

Z
k12ð1=6Þð1KaA1Þð1KaB2Þ

S
;

d½A2B1�

½B�0daA

Z
k21ð1=3Þð1KaA2Þð1KaB1Þ

S
;

d½A2B1�

½B�0daA

Z
k22ð1=3Þð1KaA2Þð1KaB2Þ

S

(A32)

where

SZ k11ð1=6Þð1KaA1Þð1KaB1ÞCk12ð1=6Þð1KaA1Þð1

KaB2ÞCk21ð1=3Þð1KaA2Þð1KaB1ÞCk22ð1=3Þð1

KaA2Þð1KaB2Þ
This system of differential equations was solved

numerically and the integral values were used for calcu-

lation of transition probabilities p as a function of

conversion of A or B groups:

pA1B1 Z
½A1B1�

½A1B1�C ½A1B2�
;

pA1B2 Z 1KpA1B1;

pA2B1 Z
½A2B1�

½A2B1�C ½A2B2�
;

pA2B2 Z 1KpA2B1;

pB1A1 Z
½A1B1�

½A1B1�C ½A2B1�
;

pB1A2 Z 1KpB1A1;

pB2A1 Z
½A1B2�

½A1B2�C ½A2B2�
; pB2B2 Z 1KpB2A1

(A33)
A.2.1. Auxiliary interrelations

The relations derived above are functions of conversions

of functional groups aA1, aA2, aB1, aB2. They are

interdependent and are a function of conversion of all A

or B groups, aA and aB. The relations between aA1, aA2,

aB1, aB2 are determined as follows. The kinetics of

consumption of groups A1 and A2 can be described as a

function of concentrations of groups A1, A2, B1 and B2

K
d½A1�

dt
Z k11½A1�½B1�Ck12½A1�½B2�;

K
d½A2�

dt
Z k21½A2�½B1�Ck22½A2�½B2�

(A34)

The four rate constants depend on reactivity of groups. In

the simplest case of additivity of Gibbs activation energies,

k11fk1Ak1B k12fk1Ak2B k21fk2Ak1B k22fk2Ak2B

the rate constants are considered to be proportional to the

products of rate constants with a reference compound. If

the reaction variable is conversion of functional groups, the

structure build up is controlled by ratios of rate constants:

k11

k21

Z
k12

k22

Z
k1A

k2A

Z kCA
k11

k21

Z
k21

k22

Z
k1B

k2B

Z kCB

Under these conditions, the Eq. (A34) can be transformed

to

d½A1�

d½A2�
Z

k1A½A1�

k2A½A2�
Z kA

½A1�

½A2�
(A35)

The solution of this differential equation reads

ln
½A1�

½A1�0
Z kA ln

½A2�

½A2�0
or 1KaA1 Z ð1KaA2Þ

kA

(A36)

[A1]0 and [A2]0 are initial concentrations of reactive
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groups. Similarly, for aB1, aB2

aB1 Z 1K ð1KaB2Þ
kB (A37)

In transforming Eqs. (A36) and (A37), the following

balance equations are employed

3aA Z 2aA2 CaA1; 2aB ZaB1 CaB2

The derivation explained above is valid for any value of

conversions aA or aB. For highly-branched off-stoichio-

metric functional polymers, aBZ1 and aAZ1/rA.

A.3. Hyperbranched polymers from BA2 monomer
1

To characterize the application potential of highly-

branched off-stoichiometric polymers, the Mn and Mw

values of classical hyperbranched polymers are compared.

Although the relations have already been derived in the past,

the generating function approach will be briefly explained

(cf. Ref. [36] pp. 136–1412 and Refs. [37] and [38]). If all A

groups have the same reactivity, the respective pgf’s have

the form

F0nðZ; zÞZ ZM0 ½ð1KaBÞZBunr CaBzAB�

½ð1KaAÞZAunr CaAzBA�
2

(A39)

FBAðZ; zÞZ ZM0 ½ð1KaBÞZBunr CaBzAB�

½ð1KaAÞZAunr CaAzBA�
(A40)

FABðZ; zÞZ ZM0½ð1KaAÞZAunr CaAzBA�
2 (A41)

The same procedure as above using the recursive

equation for u (i.e., F 0
0/Mn, and F/u/W/W 0/Mw)

gives

Mn Z
M0

1KaB

; Mw Z
M0ð1Ka2

B=2Þ

ð1KaBÞ
2

(A42)
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